
Carolina B LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palmitoylome profiling reveals S-palmitoylation–dependent antiviral activity of IFITM3. Nature Chemical Biology, 2010, 6, 610-614.	3.9	314
2	RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.	5.1	299
3	Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell, 2020, 180, 1115-1129.e13.	13.5	288
4	Defective viral genomes are key drivers of the virus–host interaction. Nature Microbiology, 2019, 4, 1075-1087.	5.9	229
5	Intensified and protective CD4+ T cell immunity in mice with anti–dendritic cell HIV gag fusion antibody vaccine. Journal of Experimental Medicine, 2006, 203, 607-617.	4.2	206
6	TLR-Independent Induction of Dendritic Cell Maturation and Adaptive Immunity by Negative-Strand RNA Viruses. Journal of Immunology, 2004, 173, 6882-6889.	0.4	131
7	Defective Viral Genomes Arising In Vivo Provide Critical Danger Signals for the Triggering of Lung Antiviral Immunity. PLoS Pathogens, 2013, 9, e1003703.	2.1	131
8	Immunostimulatory Defective Viral Genomes from Respiratory Syncytial Virus Promote a Strong Innate Antiviral Response during Infection in Mice and Humans. PLoS Pathogens, 2015, 11, e1005122.	2.1	119
9	Human Genetic Determinants of Viral Diseases. Annual Review of Genetics, 2017, 51, 241-263.	3.2	117
10	Circadian control of lung inflammation in influenza infection. Nature Communications, 2019, 10, 4107.	5.8	106
11	MDA5 Participates in the Detection of Paramyxovirus Infection and Is Essential for the Early Activation of Dendritic Cells in Response to Sendai Virus Defective Interfering Particles. Journal of Immunology, 2008, 180, 4910-4918.	0.4	105
12	A Novel Role for Viral-Defective Interfering Particles in Enhancing Dendritic Cell Maturation. Journal of Immunology, 2006, 177, 4503-4513.	0.4	101
13	Type I Interferon Induction Pathway, but Not Released Interferon, Participates in the Maturation of Dendritic Cells Induced by Negative‣trand RNA Viruses. Journal of Infectious Diseases, 2003, 187, 1126-1136.	1.9	98
14	Cutting Edge: Stealth Influenza Virus Replication Precedes the Initiation of Adaptive Immunity. Journal of Immunology, 2009, 183, 3569-3573.	0.4	88
15	InÂVivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Reports, 2015, 11, 1714-1726.	2.9	75
16	Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathogens, 2016, 12, e1005910.	2.1	74
17	IL-11 Regulates Autoimmune Demyelination. Journal of Immunology, 2009, 183, 4229-4240.	0.4	69
18	Defective (interfering)Âviral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virology, 2018, 13, 493-503.	0.9	67

2

Carolina B LÃ³pez

#	Article	IF	CITATIONS
19	Antiviral Instruction of Bone Marrow Leukocytes during Respiratory Viral Infections. Cell Host and Microbe, 2010, 7, 343-353.	5.1	66
20	Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799.	5.8	58
21	Estrogen inhibits dendritic cell maturation to RNA viruses. Blood, 2008, 112, 4574-4584.	0.6	56
22	Defective Viral Genomes: Critical Danger Signals of Viral Infections. Journal of Virology, 2014, 88, 8720-8723.	1.5	55
23	Propagation and Characterization of Influenza Virus Stocks That Lack High Levels of Defective Viral Genomes and Hemagglutinin Mutations. Frontiers in Microbiology, 2016, 7, 326.	1.5	55
24	Highly immunostimulatory RNA derived from a Sendai virus defective viral genome. Vaccine, 2013, 31, 5713-5721.	1.7	54
25	The innate immune response to RSV: Advances in our understanding of critical viral and host factors. Vaccine, 2017, 35, 481-488.	1.7	54
26	The Impact of Defective Viruses on Infection and Immunity. Annual Review of Virology, 2019, 6, 547-566.	3.0	50
27	The Virion Host Shutoff Protein of Herpes Simplex Virus 1 Blocks the Replication-Independent Activation of NF-ήB in Dendritic Cells in the Absence of Type I Interferon Signaling. Journal of Virology, 2011, 85, 12662-12672.	1.5	49
28	Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I. MBio, 2015, 6, e01265-15.	1.8	48
29	Cytokine-Independent Upregulation of MDA5 in Viral Infection. Journal of Virology, 2007, 81, 7316-7319.	1.5	45
30	Ebolavirus VP35 suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunology and Cell Biology, 2011, 89, 792-802.	1.0	42
31	A Mouse Model for Immunization with Ex Vivo Virus-Infected Dendritic Cells. Cellular Immunology, 2000, 206, 107-115.	1.4	40
32	Characterization and Distribution of Colonic Dendritic Cells in Crohn's Disease. Inflammatory Bowel Diseases, 2004, 10, 504-512.	0.9	36
33	The Virion Host Shut-Off (vhs) Protein Blocks a TLR-Independent Pathway of Herpes Simplex Virus Type 1 Recognition in Human and Mouse Dendritic Cells. PLoS ONE, 2010, 5, e8684.	1.1	36
34	Detection of respiratory syncytial virus defective genomes in nasal secretions is associated with distinct clinical outcomes. Nature Microbiology, 2021, 6, 672-681.	5.9	35
35	Proapoptotic and Antiapoptotic Actions of Stat1 versus Stat3 Underlie Neuroprotective and Immunoregulatory Functions of IL-11. Journal of Immunology, 2011, 187, 1129-1141.	0.4	34
36	Repression of Interleukin-2 mRNA Translation in Primary Human Breast Carcinoma Tumor-Infiltrating Lymphocytes. Cellular Immunology, 1998, 190, 141-155.	1.4	33

3

Carolina B LÃ³pez

#	Article	IF	CITATIONS
37	A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes. PLoS Pathogens, 2019, 15, e1007707.	2.1	33
38	Sendai Virus Infection Induces Efficient Adaptive Immunity Independently of Type I Interferons. Journal of Virology, 2006, 80, 4538-4545.	1.5	32
39	Role of Cell-to-Cell Variability in Activating a Positive Feedback Antiviral Response in Human Dendritic Cells. PLoS ONE, 2011, 6, e16614.	1.1	32
40	Systemic responses during local viral infections: type I IFNs sound the alarm. Current Opinion in Immunology, 2011, 23, 495-499.	2.4	30
41	Toll-Like Receptor-Independent Triggering of Dendritic Cell Maturation by Viruses. Journal of Virology, 2006, 80, 3128-3134.	1.5	28
42	CD8+ T Cells Are the Effectors of the Contact Dermatitis Induced by Urushiol in Mice and Are Regulated by CD4+ T Cells. International Archives of Allergy and Immunology, 1998, 117, 194-201.	0.9	26
43	Buying Time—The Immune System Determinants of the Incubation Period to Respiratory Viruses. Viruses, 2010, 2, 2541-2558.	1.5	26
44	Defective Viral Genomes Alter How Sendai Virus Interacts with Cellular Trafficking Machinery, Leading to Heterogeneity in the Production of Viral Particles among Infected Cells. Journal of Virology, 2019, 93, .	1.5	26
45	Modulation of Fatty Acid Oxidation Alters Contact Hypersensitivity to Urushiols: Role of Aliphatic Chain β-Oxidation in Processing and Activation of Urushiols. Journal of Investigative Dermatology, 1997, 108, 57-61.	0.3	25
46	Myeloid Dendritic Cells Stimulate Both Th1 and Th2 Immune Responses Depending on the Nature of the Antigen. Journal of Interferon and Cytokine Research, 2001, 21, 763-773.	0.5	24
47	IncRHOXF1, a Long Noncoding RNA from the X Chromosome That Suppresses Viral Response Genes during Development of the Early Human Placenta. Molecular and Cellular Biology, 2016, 36, 1764-1775.	1.1	24
48	Distinct Chronic Post-Viral Lung Diseases upon Infection with Influenza or Parainfluenza Viruses Differentially Impact Superinfection Outcome. American Journal of Pathology, 2020, 190, 543-553.	1.9	24
49	IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection. PLoS Pathogens, 2017, 13, e1006173.	2.1	21
50	Granulocyte Colony-Stimulating Factor Protects Mice during Respiratory Virus Infections. PLoS ONE, 2012, 7, e37334.	1.1	20
51	Preparation of Respiratory Syncytial Virus with High or Low Content of Defective Viral Particles and Their Purification from Viral Stocks. Bio-protocol, 2016, 6, .	0.2	19
52	Deficiency of Melanoma Differentiation–associated Protein 5 Results in Exacerbated Chronic Postviral Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 437-448.	2.5	18
53	Virus-derived immunostimulatory RNA induces type I IFN-dependent antibodies and T-cell responses during vaccination. Vaccine, 2018, 36, 4039-4045.	1.7	17
54	ANTIVIRAL IMMUNITY AND THE ROLE OF DENDRITIC CELLS. International Reviews of Immunology, 2002, 21, 339-353.	1.5	15

CAROLINA B LÃ³pez

#	Article	IF	CITATIONS
55	The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. MBio, 2020, 11, .	1.8	10
56	A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. Microbiology and Molecular Biology Reviews, 2022, 86, .	2.9	8
57	Virus Budding/Host Interactions. Advances in Virology, 2011, 2011, 1-2.	0.5	5
58	Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathogens, 2022, 18, e1010228.	2.1	5
59	Unexpected lessons from the neglected: How defective viral genomes became important again. PLoS Pathogens, 2019, 15, e1007450.	2.1	4
60	Respiratory Syncytial Virus Infection in Mice and Detection of Viral Genomes in the Lung Using RT-qPCR. Bio-protocol, 2016, 6, .	0.2	4
61	Harnessing defective viruses to fight infections. Med, 2022, 3, 1-2.	2.2	1
62	Host Immune Response to Influenza Virus. , 2009, , 131-156.		0