
Cliff S Law

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065704/publications.pdf Version: 2024-02-01

CLIEF S LANK

#	Article	IF	CITATIONS
1	A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407, 695-702.	27.8	1,417
2	In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 2000, 14, 373-387.	4.9	1,177
3	Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of Geophysical Research, 2005, 110, .	3.3	596
4	The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature, 2004, 428, 549-553.	27.8	476
5	Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophysical Research Letters, 2006, 33, .	4.0	359
6	Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 2000, 407, 727-730.	27.8	260
7	The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2703-2743.	1.4	160
8	Retention of dissolved iron and Fellin an iron induced Southern Ocean phytoplankton bloom. Geophysical Research Letters, 2001, 28, 3425-3428.	4.0	132
9	Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Chemical Engineering Research and Design, 2012, 90, 475-488.	5.6	110
10	The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnology and Oceanography, 2005, 50, 1872-1886.	3.1	106
11	Open-ocean carbon monoxide photoproduction. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1695-1705.	1.4	102
12	Relating Carbon Monoxide Photoproduction to Dissolved Organic Matter Functionality. Environmental Science & Technology, 2008, 42, 3271-3276.	10.0	87
13	Variability of chromophoric organic matter in surface waters of the Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1666-1684.	1.4	82
14	Microbial community structure and function in the Levantine Basin of the eastern Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1721-1743.	1.4	61
15	Southern Ocean iron enrichment promotes inorganic carbon drawdown. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2483-2507.	1.4	59
16	High rates of nitrogen fixation during an in-situ phosphate release experiment in the Eastern Mediterranean Sea. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	56
17	The open-ocean source of atmospheric carbon monoxide. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1685-1694.	1.4	54
18	No stimulation of nitrogen fixation by nonâ€filamentous diazotrophs under elevated <scp>CO</scp> ₂ in the South Pacific. Global Change Biology, 2012, 18, 3004-3014.	9.5	50

CLIFF S LAW

#	Article	IF	CITATIONS
19	Climate change projections for the surface ocean around New Zealand. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 309-335.	2.0	50
20	Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean. Atmospheric Chemistry and Physics, 2015, 15, 1783-1794.	4.9	47
21	An intercomparison of oceanic methane and nitrous oxide measurements. Biogeosciences, 2018, 15, 5891-5907.	3.3	42
22	The response of the marine nitrogen cycle to ocean acidification. Global Change Biology, 2018, 24, 5031-5043.	9.5	42
23	Evolving research directions in Surface Ocean - Lower Atmosphere (SOLAS) science. Environmental Chemistry, 2013, 10, 1.	1.5	40
24	Satellite-derived spatial and temporal biological variability in the Cyprus Eddy. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 2990-3010.	1.4	38
25	Sea spray aerosol organic enrichment, water uptake and surface tension effects. Atmospheric Chemistry and Physics, 2020, 20, 7955-7977.	4.9	38
26	Horizontal dispersion within an anticyclonic mesoscale eddy. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 739-755.	1.4	34
27	Studies of the microbial P-cycle during a Lagrangian phosphate-addition experiment in the Eastern Mediterranean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 2928-2943.	1.4	33
28	A Harmonized Nitrous Oxide (N2O) Ocean Observation Network for the 21st Century. Frontiers in Marine Science, 2019, 6, .	2.5	32
29	Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300Âkm South Pacific Zonal Section (153ºE–150°W). Global Biogeochemical Cycles, 2018, 32, 187-207.	4.9	31
30	The impacts of ocean acidification on marine trace gases and the implications forÂatmospheric chemistry andÂclimate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190769.	2.1	31
31	Determination of Persian Gulf Water Transport and oxygen utilisation rates using SF6as a novel transient tracer. Geophysical Research Letters, 2001, 28, 815-818.	4.0	29
32	The SOLAS air–sea gas exchange experiment (SAGE) 2004. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 753-763.	1.4	29
33	Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 72, 102-120.	1.4	29
34	Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 869-881.	1.4	28
35	Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 155-195.	2.0	27
36	Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign. Atmospheric Chemistry and Physics, 2017, 17, 13645-13667.	4.9	25

CLIFF S LAW

#	Article	IF	CITATIONS
37	Surface layer mixing during the SAGE ocean fertilization experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 776-785.	1.4	24
38	Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean. Progress in Oceanography, 2013, 116, 193-206.	3.2	24
39	Marine carbonyl sulfide (OCS) and carbon disulfide (CS ₂): a compilation of measurements in seawater and the marine boundary layer. Earth System Science Data, 2020, 12, 591-609.	9.9	24
40	Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment). Journal of Geophysical Research, 2006, 111, .	3.3	19
41	Carbon monoxide emission from a Mauritanian upwelling filament. Marine Chemistry, 2011, 127, 123-133.	2.3	18
42	Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air–sea flux. Ocean Science, 2016, 12, 1033-1048.	3.4	18
43	DimethylsulfoniopropionateÂ(DMSP) and dimethyl sulfideÂ(DMS) cycling across contrasting biological hotspots of the New Zealand subtropical front. Ocean Science, 2017, 13, 961-982.	3.4	17
44	Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Clobal Change Biology, 2020, 26, 5630-5645.	9.5	17
45	Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage. Earth System Science Data, 2021, 13, 3115-3153.	9.9	16
46	Control of the phytoplankton response during the SAGE experiment: A synthesis. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 824-838.	1.4	15
47	Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment. Atmospheric Chemistry and Physics, 2018, 18, 5861-5877.	4.9	14
48	Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean. Atmospheric Chemistry and Physics, 2020, 20, 3061-3078.	4.9	14
49	Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science. Anthropocene, 2015, 12, 54-68.	3.3	13
50	Bacterial abundance, processes and diversity responses to acidification at a coastal CO ₂ vent. FEMS Microbiology Letters, 2015, 362, fnv154.	1.8	13
51	A traceâ€metal clean, pHâ€controlled incubator system for ocean acidification incubation studies. Limnology and Oceanography: Methods, 2013, 11, 53-61.	2.0	12
52	Oceanic phytoplankton are a potentially important source of benzenoids to the remote marine atmosphere. Communications Earth & Environment, 2021, 2, .	6.8	12
53	Correction to "Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations― Geophysical Research Letters, 2006, 33, .	4.0	11
54	Carbon distribution and fluxes during the SERIES iron fertilization experiment with special reference to the fugacity of carbon dioxide (fCO2). Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2053-2074.	1.4	11

CLIFF S LAW

#	Article	IF	CITATIONS
55	Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Biogeosciences, 2018, 15, 581-595.	3.3	11
56	A Climate Change Atlas for the Ocean. Oceanography, 2011, 24, 13-16.	1.0	10
57	Subtle bacterioplankton community responses to elevated <scp>CO₂</scp> and warming in the oligotrophic South Pacific gyre. Environmental Microbiology Reports, 2020, 12, 377-386.	2.4	9
58	Matching carbon pools and fluxes for the Southern Ocean Iron Release Experiment (SOIREE). Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1941-1960.	1.4	7
59	Estimates of Methane Release From Gas Seeps at the Southern Hikurangi Margin, New Zealand. Frontiers in Earth Science, 2022, 10, .	1.8	6
60	Reply to comment by X. Zhang on "Measurements of airâ€sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizationsâ€: Geophysical Research Letters, 2007, 34, .	4.0	5
61	Assessing approaches to determine the effect of ocean acidification on bacterial processes. Biogeosciences, 2016, 13, 4379-4388.	3.3	5
62	The Influence of Ocean Acidification and Warming on DMSP & DMS in New Zealand Coastal Water. Atmosphere, 2021, 12, 181.	2.3	5
63	An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series. Biogeosciences, 2022, 19, 241-269.	3.3	5
64	No evidence of altered relationship between diet and consumer fatty acid composition in a natural plankton community under combined climate drivers. Journal of Experimental Marine Biology and Ecology, 2022, 551, 151734.	1.5	3
65	Marine aerosol hygroscopicity and volatility, measured on the Chatham Rise (New Zealand). , 2013, , .		Ο

66 Air–Sea Gas Transfer: Nitrous Oxide and Methane. , 2019, , 14-20.

0