Turkan Gamze Ulusoy Ghobadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065664/publications.pdf

Version: 2024-02-01

28 453 12
papers citations h-index

713466 21 g-index

31 31 docs citations

31 times ranked 598 citing authors

#	Article	IF	CITATIONS
1	Selective Glucose Sensing under Physiological pH with Flexible and Binderâ€Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem, 2022, 9, .	3.4	4
2	Lithography-free metamaterial absorbers: opinion. Optical Materials Express, 2022, 12, 524.	3.0	6
3	Light-Driven Water Oxidation with Ligand-Engineered Prussian Blue Analogues. Inorganic Chemistry, 2022, 61, 3931-3941.	4.0	7
4	Subwavelength Densely Packed Disordered Semiconductor Metasurface Units for Photoelectrochemical Hydrogen Generation. ACS Applied Energy Materials, 2022, 5, 2826-2837.	5.1	6
5	"Plug and Play―Photosensitizer–Catalyst Dyads for Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 21131-21140.	8.0	3
6	How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry - A European Journal, 2021, 27, 3638-3649.	3.3	33
7	Photocatalytic water oxidation with a Prussian blue modified brown TiO ₂ . Chemical Communications, 2021, 57, 508-511.	4.1	16
8	Pushing the limits in photosensitizer-catalyst interaction via a short cyanide bridge for water oxidation. Cell Reports Physical Science, 2021, 2, 100319.	5.6	7
9	Frontispiece: How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry - A European Journal, 2021, 27, .	3.3	0
10	Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2021, 27, 8966-8976.	3.3	9
11	Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2021, 27, 8890-8890.	3.3	0
12	Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Analytica Chimica Acta, 2021, 1188, 339188.	5.4	9
13	A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue. Angewandte Chemie, 2020, 132, 4111-4119.	2.0	12
14	Large scale compatible fabrication of gold capped titanium dioxide nanoantennas using a shadowing effect for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 1521-1531.	7.1	10
15	Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length. Plasmonics, 2020, 15, 829-839.	3.4	3
16	A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue. Angewandte Chemie - International Edition, 2020, 59, 4082-4090.	13.8	30
17	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO 4 for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2483-2483.	6.8	4
18	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO ₄ for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2577-2588.	6.8	34

#	Article	IF	CITATIONS
19	Innenrücktitelbild: A Robust, Preciousâ€Metalâ€Free Dyeâ€Sensitized Photoanode for Water Oxidation: A Nanosecondâ€Long Excitedâ€State Lifetime through a Prussian Blue Analogue (Angew. Chem. 10/2020). Angewandte Chemie, 2020, 132, 4211-4211.	2.0	1
20	Investigation of angstrom-thick aluminium oxide passivation layers to improve the gate lag performance of GaN HEMTs. Materials Research Express, 2019, 6, 095052.	1.6	1
21	Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 2019, 7, 1900028.	7.3	28
22	Strategies for Plasmonic Hotâ€Electronâ€Driven Photoelectrochemical Water Splitting. ChemPhotoChem, 2018, 2, 161-182.	3.0	51
23	Improved lithium-ion battery anode performance via multiple element approach. Journal of Alloys and Compounds, 2018, 730, 96-102.	5 . 5	16
24	Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Scientific Reports, 2018, 8, 16322.	3.3	39
25	A Nobleâ∈Metalâ∈Free Heterogeneous Photosensitizerâ∈Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light. Angewandte Chemie - International Edition, 2018, 57, 17173-17177.	13.8	32
26	Examination of gas and solid products during the preparation of activated carbon using phosphoric acid. Journal of Environmental Management, 2018, 228, 328-335.	7.8	20
27	Emerging photoluminescence from defective vanadium diselenide nanosheets. Photonics Research, 2018, 6, 244.	7.0	31
28	Catalytic Properties of Vanadium Diselenide: A Comprehensive Study on Its Electrocatalytic Performance in Alkaline, Neutral, and Acidic Media. ACS Omega, 2017, 2, 8319-8329.	3 . 5	40