Riccardo Rigon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065366/publications.pdf

Version: 2024-02-01

65 papers 5,838 citations

36 h-index 110387 64 g-index

100 all docs

100 docs citations

100 times ranked

5230 citing authors

#	Article	IF	CITATIONS
1	Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment. Geoscientific Model Development, 2022, 15, 75-104.	3.6	3
2	On the relations between the hydrological dynamical systems of water budget, travel time, response time and tracer concentrations. Hydrological Processes, 2021, 35, .	2.6	4
3	Comparing Evapotranspiration Estimates from the GEOframe-Prospero Model with Penman–Monteith and Priestley-Taylor Approaches under Different Climate Conditions. Water (Switzerland), 2021, 13, 1221.	2.7	13
4	A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation. Cryosphere, 2021, 15, 2541-2568.	3.9	13
5	Bridging technology transfer boundaries: Integrated cloud services deliver results of nonlinear process models as surrogate model ensembles. Environmental Modelling and Software, 2021, 146, 105231.	4.5	9
6	The GEOframe-NewAge Modelling System Applied in a Data Scarce Environment. Water (Switzerland), 2020, 12, 86.	2.7	7
7	More green and less blue water in the Alps during warmer summers. Nature Climate Change, 2020, 10, 155-161.	18.8	134
8	The Representation of Hydrological Dynamical Systems Using Extended Petri Nets (EPN). Water Resources Research, 2019, 55, 8895-8921.	4.2	7
9	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
10	The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8. Geoscientific Model Development, 2018, 11, 2189-2207.	3.6	8
11	Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, 2017, 104, 37-54.	3.8	21
12	Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences, 2017, 21, 3145-3165.	4.9	51
13	Performance of site-specific parameterizations of longwave radiation. Hydrology and Earth System Sciences, 2016, 20, 4641-4654.	4.9	16
14	Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System. Water (Switzerland), 2016, 8, 12.	2.7	7
15	Geomorphological control on variably saturated hillslope hydrology and slope instability. Water Resources Research, 2016, 52, 4590-4607.	4.2	18
16	Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin. Atmospheric Research, 2016, 178-179, 471-483.	4.1	59
17	Spatioâ€temporal variability of water and energy fluxes – a case study for a mesoscale catchment in preâ€alpine environment. Hydrological Processes, 2016, 30, 3804-3823.	2.6	20
18	The geomorphological unit hydrograph from a historicalâ€critical perspective. Earth Surface Processes and Landforms, 2016, 41, 27-37.	2.5	66

#	Article	IF	CITATIONS
19	An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 2016, 537, 45-60.	5.4	349
20	Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences, 2016, 20, 4929-4947.	4.9	14
21	Some Remarks on Bimodality Effects of the Hydraulic Properties on Shear Strength of Unsaturated Soils. Vadose Zone Journal, 2015, 14, 1-12.	2.2	7
22	Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization. PLoS ONE, 2015, 10, e0116435.	2.5	10
23	Snow water equivalent modeling components in NewAge-JGrass. Geoscientific Model Development, 2014, 7, 725-736.	3.6	21
24	GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geoscientific Model Development, 2014, 7, 2831-2857.	3.6	134
25	Evolution and selection of river networks: Statics, dynamics, and complexity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2417-2424.	7.1	143
26	Integrated Physically based System for Modeling Landslide Susceptibility. Procedia Earth and Planetary Science, 2014, 9, 74-82.	0.6	36
27	Simulated effect of soil depth and bedrock topography on nearâ€surface hydrologic response and slope stability. Earth Surface Processes and Landforms, 2013, 38, 146-159.	2.5	66
28	Role of Vegetation on Slope Stability under Transient Unsaturated Conditions. Procedia Environmental Sciences, 2013, 19, 932-941.	1.4	73
29	Modeling shortwave solar radiation using the JGrass-NewAge system. Geoscientific Model Development, 2013, 6, 915-928.	3.6	17
30	Modelling Evapotranspiration and the Surface Energy Budget in Alpine Catchments., 2012,,.		1
31	Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution. Hydrology and Earth System Sciences, 2012, 16, 3959-3971.	4.9	48
32	The geomorphic structure of the runoff peak. Hydrology and Earth System Sciences, 2011, 15, 1853-1863.	4.9	24
33	Carbonate pseudotachylytes: evidence for seismic faulting along carbonate faults. Terra Nova, 2011, 23, 187-194.	2.1	17
34	On the relative role of upslope and downslope topography for describing water flow path and storage dynamics: a theoretical analysis. Hydrological Processes, 2011, 25, 3909-3923.	2.6	22
35	The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing. Geoscientific Model Development, 2011, 4, 943-955.	3.6	42
36	A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere, 2011, 5, 469-484.	3.9	177

#	Article	IF	CITATIONS
37	Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtopâ€FS. Hydrological Processes, 2008, 22, 532-545.	2.6	193
38	A perturbative view on the subsurface water pressure response at hillslope scale. Water Resources Research, 2008, 44, .	4.2	8
39	Probabilistic structure of the distance between tributaries of given size in river networks. Water Resources Research, 2007, 43, .	4.2	13
40	GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. Journal of Hydrometeorology, 2006, 7, 371-388.	1.9	233
41	Impact of Watershed Geomorphic Characteristics on the Energy and Water Budgets. Journal of Hydrometeorology, 2006, 7, 389-403.	1.9	72
42	Potential for landsliding: Dependence on hyetograph characteristics. Journal of Geophysical Research, 2005, 110, .	3.3	67
43	The GEOTOP snow module. Hydrological Processes, 2004, 18, 3667-3679.	2.6	61
44	Hillslope and channel contributions to the hydrologic response. Water Resources Research, 2003, 39,	4.2	87
45	Network allometry. Geophysical Research Letters, 2002, 29, 3-1.	4.0	107
46	Feasible optimality implies Hack's Law. Water Resources Research, 1998, 34, 3181-3189.	4.2	32
47	CHANNEL NETWORKS. Annual Review of Earth and Planetary Sciences, 1998, 26, 289-327.	11.0	132
48	On Hack's Law. Water Resources Research, 1996, 32, 3367-3374.	4.2	202
49	Scaling laws for river networks. Physical Review E, 1996, 53, 1510-1515.	2.1	208
50	Thermodynamics of Fractal Networks. Physical Review Letters, 1996, 76, 3364-3367.	7.8	89
51	Geomorphological signatures of varying climate. Nature, 1995, 374, 632-635.	27.8	188
52	Can One Gauge the Shape of a Basin?. Water Resources Research, 1995, 31, 1119-1127.	4.2	138
53	On the spatial organization of soil moisture fields. Geophysical Research Letters, 1995, 22, 2757-2760.	4.0	193
54	On landscape self-organization. Journal of Geophysical Research, 1994, 99, 11971-11993.	3.3	102

#	Article	IF	CITATIONS
55	Geomorphological width functions and the random cascade. Geophysical Research Letters, 1994, 21, 2123-2126.	4.0	36
56	Self-organized river basin landscapes: Fractal and multifractal characteristics. Water Resources Research, 1994, 30, 3531-3539.	4.2	62
57	Are river basins optimal channel networks?. Advances in Water Resources, 1993, 16, 69-79.	3.8	42
58	Optimal channel networks: A framework for the study of river basin morphology. Water Resources Research, 1993, 29, 1635-1646.	4.2	135
59	Self-organized fractal river networks. Physical Review Letters, 1993, 70, 822-825.	7.8	260
60	Energy dissipation, runoff production, and the three-dimensional structure of river basins. Water Resources Research, 1992, 28, 1095-1103.	4.2	258
61	Fractal structures as least energy patterns: The case of river networks. Geophysical Research Letters, 1992, 19, 889-892.	4.0	150
62	Minimum energy and fractal structures of drainage networks. Water Resources Research, 1992, 28, 2183-2195.	4.2	230
63	On What is Explained by the Form of a Channel Network. Water Science and Technology Library, 1992, , 379-399.	0.3	1
64	Geomorphological dispersion. Water Resources Research, 1991, 27, 513-525.	4.2	268
65	A Note on Fractal Channel Networks. Water Resources Research, 1991, 27, 3041-3049.	4.2	112