
Bertrand P Beauvoit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6064432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silencing of the Mitochondrial Ascorbate Synthesizing Enzyme <scp>l</scp> -Galactono-1,4-Lactone Dehydrogenase Affects Plant and Fruit Development in Tomato. Plant Physiology, 2007, 145, 1408-1422.	2.3	184
2	¹ H NMR, GCâ^'EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon. Analytical Chemistry, 2009, 81, 2884-2894.	3.2	147
3	Role of the non-respiratory pathways in the utilization of molecular oxygen bySaccharomyces cerevisiae. Yeast, 2003, 20, 1115-1144.	0.8	129
4	Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. Frontiers in Plant Science, 2019, 10, 1091.	1.7	127
5	Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism Â. Plant Physiology, 2014, 164, 1204-1221.	2.3	119
6	Oxygen Consumption by Anaerobic Saccharomyces cerevisiae under Enological Conditions: Effect on Fermentation Kinetics. Applied and Environmental Microbiology, 2003, 69, 113-121.	1.4	111
7	Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion. Plant Cell, 2014, 26, 3224-3242.	3.1	103
8	Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 2018, 122, 1-21.	1.4	77
9	Modelling central metabolic fluxes by constraintâ€based optimization reveals metabolic reprogramming of developing <i>Solanum lycopersicum</i> (tomato) fruit. Plant Journal, 2015, 81, 24-39.	2.8	76
10	Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes. Molecular and Cellular Biochemistry, 2004, 267, 157-166.	1.4	75
11	Metabolic acclimation to hypoxia revealed by metabolite gradients in melon fruit. Journal of Plant Physiology, 2010, 167, 242-245.	1.6	75
12	Respiration climacteric in tomato fruits elucidated by constraintâ€based modelling. New Phytologist, 2017, 213, 1726-1739.	3.5	67
13	Polyphosphates as a source of high energy phosphates in yeast mitochondria: A 31 P NMR study. FEBS Letters, 1989, 252, 17-21.	1.3	62
14	Activation of Ras cascade increases the mitochondrial enzyme content of respiratory competent yeast. Biochemical and Biophysical Research Communications, 2002, 293, 1383-1388.	1.0	62
15	Energetic and morphological plasticity of C6 glioma cells grown on 3-D support; effect of transient glutamine deprivation. Journal of Bioenergetics and Biomembranes, 1998, 30, 565-578.	1.0	52
16	Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. FEBS Journal, 1993, 214, 163-172.	0.2	48
17	Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: control of energetic yield by the amount of mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 45-56.	0.5	48
18	Contribution of the phosphorylable complex I in the growth phase-dependent respiration of C6 glioma cells in vitro. Journal of Bioenergetics and Biomembranes, 2003, 35, 439-450.	1.0	45

#	Article	IF	CITATIONS
19	Constraint-Based Modeling Highlights Cell Energy, Redox Status and α-Ketoglutarate Availability as Metabolic Drivers for Anthocyanin Accumulation in Grape Cells Under Nitrogen Limitation. Frontiers in Plant Science, 2018, 9, 421.	1.7	42
20	Non-respiratory oxygen consumption pathways in anaerobically-grownSaccharomyces cerevisiae: evidence and partial characterization. Yeast, 2002, 19, 1299-1321.	0.8	37
21	Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2088-H2097.	1.5	37
22	Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany, 2020, 71, 5823-5836.	2.4	35
23	cAMP-induced modulation of the growth yield of Saccharomyces cerevisiae during respiratory and respiro-fermentative metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 159-169.	0.5	34
24	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	3.3	34
25	Modeling Protein Destiny in Developing Fruit. Plant Physiology, 2019, 180, 1709-1724.	2.3	33
26	Site specific alterations of adipose tissue mitochondria in 3′-azido-3′-deoxythymidine (AZT)-treated rats: An early stage in lipodystrophy?. Biochemical Pharmacology, 2005, 70, 90-101.	2.0	30
27	Uridine supplementation antagonizes zidovudineâ€induced mitochondrial myopathy and hyperlactatemia in mice. Arthritis and Rheumatism, 2008, 58, 318-326.	6.7	29
28	<title>Tumor localization using fluorescence of indocyanine green (ICG) in rat models</title> . , 1995, 2389, 789.		28
29	Regulation of Cytochrome c Oxidase by Adenylic Nucleotides. Is Oxidative Phosphorylation Feedback Regulated by its End-Products?. IUBMB Life, 2001, 52, 143-152.	1.5	28
30	Thermodynamic and kinetic control of ATP synthesis in yeast mitochondria: Role of ΔpH. FEBS Letters, 1989, 244, 255-258.	1.3	27
31	Sarcoplasmic ATP-sensitive potassium channel blocker HMR1098 protects the ischemic heart: Implication of calcium, complex I, reactive oxygen species and mitochondrial ATP-sensitive potassium channel. Journal of Molecular and Cellular Cardiology, 2007, 42, 631-642.	0.9	26
32	ATP-regulation of cytochrome oxidase in yeast mitochondria. Role of subunit VIa. FEBS Journal, 1999, 263, 118-127.	0.2	24
33	Growth Yield Homeostasis in Respiring Yeast Is Due to a Strict Mitochondrial Content Adjustment. Journal of Biological Chemistry, 2006, 281, 26779-26784.	1.6	24
34	Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells. BMC Systems Biology, 2011, 5, 95.	3.0	24
35	The calorimetric-respirometric ratio is an on-line marker of enthalpy efficiency of yeast cells growing on a non-fermentable carbon source. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 329-340.	0.5	22
36	Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H152-H160.	1.5	22

Bertrand P Beauvoit

#	Article	IF	CITATIONS
37	OPTICAL DETERMINATION OF FATTY CHANGE OF THE GRAFT LIVER WITH NEAR-INFRARED TIME-RESOLVED SPECTROSCOPY. Transplantation, 1996, 62, 642-647.	0.5	22
38	Application of near-infrared time-resolved spectroscopy to rat liver - a preliminary report for surgical application. Physics in Medicine and Biology, 1999, 44, 2049-2061.	1.6	21
39	Oral uridine supplementation antagonizes the peripheral neuropathy and encephalopathy induced by antiretroviral nucleoside analogues. Aids, 2010, 24, 345-352.	1.0	20
40	Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. Frontiers in Plant Science, 2019, 10, 1201.	1.7	20
41	Isolation and properties of promitochondria from anaerobic stationary-phase yeast cells. Antonie Van Leeuwenhoek, 2004, 85, 9-21.	0.7	19
42	MitoK ATP -dependent changes in mitochondrial volume and in complex II activity during ischemic and pharmacological preconditioning of langendorff-perfused rat heart. Journal of Bioenergetics and Biomembranes, 2006, 38, 101-112.	1.0	14
43	Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fineâ€ŧuned during fruit development. New Phytologist, 2021, 230, 1489-1502.	3.5	12
44	Site-Specific Reduction of Oxidative and Lipid Metabolism in Adipose Tissue of 3′-Azido-3′-Deoxythymidine-Treated Rats. Antimicrobial Agents and Chemotherapy, 2007, 51, 583-590.	1.4	11
45	Role of Pyrimidine Depletion in the Mitochondrial Cardiotoxicity of Nucleoside Analogue Reverse Transcriptase Inhibitors. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 55, 550-557.	0.9	11
46	Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. Frontiers in Plant Science, 2019, 10, 594.	1.7	9
47	Ammonium supply induces differential metabolic adaptive responses in tomato according to leaf phenological stage. Journal of Experimental Botany, 2021, 72, 3185-3199.	2.4	9
48	<title>Time-resolved spectroscopy of mitochondria, cells, and rat tissues under normal and pathological conditions</title> . , 1995, 2326, 127.		8
49	Effects of Right, Left, and Biventricular Pacing on Myocardial Perfusion in Ischemic Conditions. Journal of Cardiovascular Electrophysiology, 2006, 17, 1121-1128.	0.8	6
50	Control of growth yield of yeast on respiratory substrate by mitochondrial content. Thermochimica Acta, 2002, 394, 113-121.	1.2	4
51	The Evolution of Leaf Function during Development Is Reflected in Profound Changes in the Metabolic Composition of the Vacuole. Metabolites, 2021, 11, 848.	1.3	4
52	<title>Near-infrared spectroscopy of a heterogeneous turbid system containing distributed absorbers</title> . , 1995, , .		3
53	Time-Resolved Spectroscopy of mitochondria, cells and tissues under normal and pathological conditions. , 1998, , 445-455.		1
54	Modelling Metabolic Networks—The Theories of Metabolism. Advances in Botanical Research, 2013, 67, 593-621.	0.5	0

#	Article	IF	CITATIONS
55	14C Pulse Labeling to Estimate External Fluxes and Turnovers in Primary Metabolism. Methods in Molecular Biology, 2014, 1090, 41-52.	0.4	0