
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6063982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporosity and nitrogen doping: The leading effect in oxygen reduction reaction activity and selectivity at nitrogenâ€doped carbons prepared by using polyethylene oxideâ€blockâ€polystyrene as a sacrificial template. Electrochemical Science Advances, 2023, 3, .	2.8	0
2	Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. Polymer, 2022, 255, 125098.	3.8	11
3	Catalytic Halogen Exchange in Supplementary Activator and Reducing Agent Atom Transfer Radical Polymerization for the Synthesis of Block Copolymers. Macromolecular Rapid Communications, 2021, 42, e2000532.	3.9	3
4	Electrochemistry for Atom Transfer Radical Polymerization. Chemical Record, 2021, 21, 2203-2222.	5.8	9
5	Enhancement of the Rate of Atom Transfer Radical Polymerization in Organic Solvents by Addition of Water: An Electrochemical Study ChemElectroChem, 2021, 8, 2450-2458.	3.4	12
6	Electrochemical study of the effect of Al3+ on the stability and performance of Cu-based ATRP catalysts in organic media. Electrochimica Acta, 2021, 388, 138589.	5.2	11
7	Oxygen Reduction Reaction at Singleâ€Site Catalysts: A Combined Electrochemical Scanning Tunnelling Microscopy and DFT Investigation on Iron Octaethylporphyrin Chloride on HOPG**. ChemElectroChem, 2021, 8, 2825-2835.	3.4	11
8	on Gold and Silver Electrodes: enhancement from S specific adsorption and modulation from substituent effects. Electrochimica Acta, 2021, , 139563.	5.2	1
9	Biocompatible polymers via aqueous electrochemically mediated atom transfer radical polymerization. Journal of Polymer Science, 2020, 58, 114-123.	3.8	25
10	Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. Polymer Chemistry, 2020, 11, 6745-6762.	3.9	11
11	Electrochemical Scanning Tunneling Microscopy Investigations of FeN ₄ â€Based Macrocyclic Molecules Adsorbed on Au(111) and Their Implications in the Oxygen Reduction Reaction. ChemElectroChem, 2020, 7, 1431-1437.	3.4	21
12	Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of <i>N</i> , <i>N</i> â€Ðimethylacrylamide. ChemElectroChem, 2020, 7, 1378-1388.	3.4	19
13	Copper-Catalysed "Activators Regenerated by Electron Transfer―"Atom Transfer Radical Polymerisation―of Styrene from a Bifunctional Initiator in Ethyl Acetate/Ethanol, Using Ascorbic Acid/Sodium Carbonate as Reducing System. Macromolecular Research, 2020, 28, 751-761.	2.4	6
14	Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. ACS Macro Letters, 2020, 9, 693-699.	4.8	23
15	Biocompatible polymers via aqueous electrochemically mediated atom transfer radical polymerization. Journal of Polymer Science, 2020, 58, 114-123.	3.8	2
16	Mesoporous Carbon with Different Density of Thiophenic‣ike Functional Groups and Their Effect on Oxygen Reduction. ChemSusChem, 2019, 12, 4229-4239.	6.8	29
17	Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochimica Acta, 2019, 320, 134563.	5.2	23
18	Toward Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer (<i>e</i> RAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents?. Macromolecules, 2019, 52, 1479-1488.	4.8	48

#	Article	IF	CITATIONS
19	Tannic Acidâ€Inspired Starâ€Like Macromolecules via Temporally Controlled Multiâ€&tep Potential Electrolysis. Macromolecular Chemistry and Physics, 2019, 220, 1900073.	2.2	26
20	Electrochemical approaches for better understanding of atom transfer radical polymerization. Current Opinion in Electrochemistry, 2019, 15, 50-57.	4.8	10
21	Towards scale-up of electrochemically-mediated atom transfer radical polymerization: Use of a stainless-steel reactor as both cathode and reaction vessel. Electrochimica Acta, 2019, 304, 505-512.	5.2	25
22	Electrochemically Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate: The Importance of Catalytic Halogen Exchange. ChemElectroChem, 2019, 6, 4257-4265.	3.4	14
23	SiO2–TiO2 multilayer via electrochemical deposition: characterization of reflection and refractive index. Journal of Sol-Gel Science and Technology, 2019, 89, 196-204.	2.4	10
24	New protocol to determine the equilibrium constant of atom transfer radical polymerization. Electrochimica Acta, 2018, 260, 648-655.	5.2	43
25	Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability. ACS Catalysis, 2018, 8, 1122-1137.	11.2	83
26	Electrochemically mediated ATRP in ionic liquids: controlled polymerization of methyl acrylate in [BMIm][OTf]. Polymer Chemistry, 2018, 9, 646-655.	3.9	48
27	Probing the correlation between Pt-support interaction and oxygen reduction reaction activity in mesoporous carbon materials modified with Pt-N active sites. Electrochimica Acta, 2018, 277, 287-300.	5.2	45
28	An "inherently chiral―1,1′-bibenzimidazolium additive for enantioselective voltammetry in ionic liquid media. Electrochemistry Communications, 2018, 89, 57-61.	4.7	19
29	Electrochemical triggering and control of atom transfer radical polymerization. Current Opinion in Electrochemistry, 2018, 8, 1-7.	4.8	41
30	Addressing the role of triphenylphosphine in copper catalyzed ATRP. Polymer Chemistry, 2018, 9, 5348-5358.	3.9	7
31	Electrochemical Procedures To Determine Thermodynamic and Kinetic Parameters of Atom Transfer Radical Polymerization. ACS Symposium Series, 2018, , 161-189.	0.5	1
32	Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources. Journal of Power Sources, 2018, 402, 434-446.	7.8	36
33	Reprint of "Electrochemical reduction of organic bromides in 1-butyl-3-methylimidazolium tetrafluoroborateâ€: Journal of Electroanalytical Chemistry, 2018, 819, 562-569.	3.8	4
34	Electrochemically mediated atom transfer radical polymerization of acrylonitrile and poly(acrylonitrile-b-butyl acrylate) copolymer as a precursor for N-doped mesoporous carbons. Electrochimica Acta, 2018, 285, 344-354.	5.2	31
35	"Inherently Chiral―Ionicâ€Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes. Angewandte Chemie - International Edition, 2017, 56, 2079-2082.	13.8	33
36	Electrochemically mediated atom transfer radical polymerization (eATRP). Progress in Polymer Science, 2017, 69, 47-78.	24.7	295

#	Article	IF	CITATIONS
37	Electrochemical characterization of common catalysts and initiators for atom transfer radical polymerization in [BMIm][OTf]. Electrochemistry Communications, 2017, 77, 116-119.	4.7	43
38	Harnessing the Interaction between Surfactant and Hydrophilic Catalyst To Control <i>e</i> ATRP in Miniemulsion. Macromolecules, 2017, 50, 3726-3732.	4.8	96
39	"Inherently Chiralâ€Ionicâ€Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes. Angewandte Chemie, 2017, 129, 2111-2114.	2.0	2
40	ATRP in Water: Kinetic Analysis of Active and Super-Active Catalysts for Enhanced Polymerization Control. Macromolecules, 2017, 50, 2696-2705.	4.8	100
41	Electrochemical 3D-growth of amorphous silica gel. Journal of Electroanalytical Chemistry, 2017, 784, 153-158.	3.8	5
42	Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process "Living―in the Presence of Fluorinated Initiators?. Macromolecules, 2017, 50, 192-202.	4.8	71
43	Nitrogen and Sulfur Doped Mesoporous Carbons, Prepared from Templating Silica, as Interesting Material for Supercapacitors. ChemistrySelect, 2017, 2, 7082-7090.	1.5	23
44	Electrochemical reduction of organic bromides in 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 2017, 804, 240-247.	3.8	8
45	Tuning the reactivity and efficiency of copper catalysts for atom transfer radical polymerization by synthetic modification of tris(2-methylpyridyl)amine. Polymer, 2017, 128, 169-176.	3.8	41
46	Rücktitelbild: "Inherently Chiral―Ionic‣iquid Media: Effective Chiral Electroanalysis on Achiral Electrodes (Angew. Chem. 8/2017). Angewandte Chemie, 2017, 129, 2254-2254.	2.0	0
47	Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. Macromolecules, 2017, 50, 8417-8425.	4.8	83
48	Electron Transfer Reactions in Atom Transfer Radical Polymerization. Synthesis, 2017, 49, 3311-3322.	2.3	57
49	Cu ⁰ â€Promoted Cyclisation of Unsaturated αâ€Halogeno Amides To Give β―and Î³â€Łactams. European Journal of Organic Chemistry, 2016, 2016, 2479-2491.	2.4	8
50	Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes. Chemistry - A European Journal, 2016, 22, 10211-10224.	3.3	25
51	Sustainable Electrochemicallyâ€Mediated Atom Transfer Radical Polymerization with Inexpensive Nonâ€Platinum Electrodes. Macromolecular Rapid Communications, 2016, 37, 1318-1322.	3.9	50
52	Multilayer Deposition of Silica Sol–Gel Films by Electrochemical Assisted Techniques. Journal of Physical Chemistry C, 2016, 120, 28820-28824.	3.1	11
53	Electrochemical approaches to the determination of rate constants for the activation step in atom transfer radical polymerization. Electrochimica Acta, 2016, 222, 393-401.	5.2	76
54	Electrochemically mediated atom transfer radical polymerization of n-butyl acrylate on non-platinum cathodes. Polymer Chemistry, 2016, 7, 5357-5365.	3.9	53

#	Article	IF	CITATIONS
55	Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment. Journal of Electroanalytical Chemistry, 2016, 782, 264-269.	3.8	43
56	Atom Transfer Radical Polymerization of Methacrylic Acid: A Won Challenge. Journal of the American Chemical Society, 2016, 138, 7216-7219.	13.7	125
57	Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. Journal of the American Chemical Society, 2016, 138, 2411-2425.	13.7	384
58	Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons. Electrochimica Acta, 2016, 197, 251-262.	5.2	53
59	Relation between Overall Rate of ATRP and Rates of Activation of Dormant Species. Macromolecules, 2016, 49, 2467-2476.	4.8	30
60	Cu2O/TiO2 heterostructures on a DVD as easy&cheap photoelectrochemical sensors. Thin Solid Films, 2016, 603, 193-201.	1.8	13
61	Activation of the Carbon–Halogen Bond. , 2015, , 917-940.		1
62	Electrochemical Approach to Copper atalyzed Reversed Atom Transfer Radical Cyclization. Advanced Synthesis and Catalysis, 2015, 357, 782-792.	4.3	19
63	Reductive cleavage of carbon–chlorine bonds at catalytic and non-catalytic electrodes in 1-butyl-3-methylimidazolium tetrafluoroborate. Physical Chemistry Chemical Physics, 2015, 17, 31228-31236.	2.8	20
64	RDRP in the presence of Cu0: The fate of Cu(I) proves the inconsistency of SET-LRP mechanism. Polymer, 2015, 72, 238-245.	3.8	79
65	Simplified Electrochemically Mediated Atom Transfer Radical Polymerization using a Sacrificial Anode. Angewandte Chemie, 2015, 127, 2418-2422.	2.0	19
66	The solvent effect on the electrocatalytic cleavage of carbon-halogen bonds on Ag and Au. Electrochimica Acta, 2015, 158, 427-436.	5.2	27
67	Simplified Electrochemically Mediated Atom Transfer Radical Polymerization using a Sacrificial Anode. Angewandte Chemie - International Edition, 2015, 54, 2388-2392.	13.8	137
68	Electrochemical deposition of silica sol–gel films on stainless steel: preliminary analysis of key variables. Journal of Sol-Gel Science and Technology, 2015, 76, 233-240.	2.4	13
69	New naphthoquinone derivatives against glioma cells. European Journal of Medicinal Chemistry, 2015, 96, 458-466.	5.5	20
70	Electrochemistry and Chirality in Bibenzimidazole Systems. Electrochimica Acta, 2015, 179, 250-262.	5.2	12
71	Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon, 2015, 95, 949-963.	10.3	252
72	Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. Macromolecules, 2015, 48, 6862-6875.	4.8	184

#	Article	IF	CITATIONS
73	"Egg of Columbusâ€: Single-step complete removal of chloride impurities from ionic liquids by AgCl deposition on silver electrode. Electrochemistry Communications, 2015, 51, 46-49.	4.7	10
74	Metal–Support Interaction in Platinum and Palladium Nanoparticles Loaded on Nitrogen-Doped Mesoporous Carbon for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 1170-1179.	8.0	158
75	Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 129-144.	11.2	166
76	Arylsulfonyl Groups: The Best Cyclization Auxiliaries for the Preparation of ATRC Î³â€Łactams can be Acidolytically Removed. European Journal of Organic Chemistry, 2014, 2014, 6734-6745.	2.4	15
77	Electrochemical Activation of Carbon–Halogen Bonds: Electrocatalysis at Palladium–Copper Nanoparticles. ChemElectroChem, 2014, 1, 1370-1381.	3.4	20
78	Electrocatalysis at palladium nanoparticles: Effect of the support nitrogen doping on the catalytic activation of carbonhalogen bond. Applied Catalysis B: Environmental, 2014, 144, 300-307.	20.2	50
79	Aqueous RDRP in the Presence of Cu ⁰ : The Exceptional Activity of Cu ^I Confirms the SARA ATRP Mechanism. Macromolecules, 2014, 47, 560-570.	4.8	187
80	Electrocatalytic reduction of bromothiophenes on gold and silver electrodes: An example of synergy in electrocatalysis. Electrochemistry Communications, 2014, 38, 100-103.	4.7	13
81	SARA ATRP or SET-LRP. End of controversy?. Polymer Chemistry, 2014, 5, 4409.	3.9	266
82	Electrochemical activation of carbon–halogen bonds: Electrocatalysis at silver/copper nanoparticles. Applied Catalysis B: Environmental, 2014, 158-159, 286-295.	20.2	45
83	Environmentally Accepted Processes for Substitution and Reduction of Cr(VI). , 2014, , 866-872.		0
84	Highly selective electrochemical hydrogenation of acetylene to ethylene at Ag and Cu cathodes. Electrochemistry Communications, 2013, 34, 90-93.	4.7	30
85	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. Macromolecules, 2013, 46, 8749-8772.	4.8	276
86	Dinuclear gold(i) complexes with propylene bridged N-heterocyclic dicarbene ligands: synthesis, structures, and trends in reactivities and properties. Dalton Transactions, 2013, 42, 10952.	3.3	57
87	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation–Disproportionation Equilibria and Kinetics. Macromolecules, 2013, 46, 3793-3802.	4.8	92
88	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Activation of Alkyl Halides by Cu ⁰ . Macromolecules, 2013, 46, 3803-3815.	4.8	81
89	Electrocatalytic dechlorination of polychloroethylenes at silver cathode. Journal of Applied Electrochemistry, 2013, 43, 227-235.	2.9	24
90	Relationship between supporting electrolyte bulkiness and dissociative electron transfer at catalytic and non-catalytic electrodes. Electrochimica Acta, 2013, 89, 52-62.	5.2	16

#	Article	IF	CITATIONS
91	On the mechanism of activation of copper-catalyzed atom transfer radical polymerization. Electrochimica Acta, 2013, 110, 655-662.	5.2	69
92	Palladium nanoparticles supported on nitrogen-doped HOPG: a surface science and electrochemical study. Physical Chemistry Chemical Physics, 2013, 15, 2923.	2.8	52
93	Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and activity toward oxygen reduction reaction. Electrochimica Acta, 2013, 88, 477-487.	5.2	52
94	Investigation of Electrochemically Mediated Atom Transfer Radical Polymerization. Macromolecules, 2013, 46, 4346-4353.	4.8	148
95	Efficient and Green Route to Î³â€Łactams by Copperâ€Catalysed Reversed Atom Transfer Radical Cyclisation of αâ€Polychloroâ€ <i>N</i> â€allylamides, using a Low Load of Metal (0.5â€mol%). Advanced Synthesis and Catalysis, 2013, 355, 1649-1660.	4.3	27
96	Electrocatalytic Activation of Aromatic Carbon-Bromine Bonds toward Carboxylation at Silver and Copper Cathodes. Journal of the Electrochemical Society, 2013, 160, G3073-G3079.	2.9	26
97	Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: Polychloromethanes. Applied Catalysis B: Environmental, 2012, 126, 347-354.	20.2	61
98	Electrocatalytic dechlorination of volatile organic compounds at copper cathode. Part II: Polychloroethanes. Applied Catalysis B: Environmental, 2012, 126, 355-362.	20.2	53
99	Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochimica Acta, 2012, 70, 50-61.	5.2	88
100	New insights into the mechanism of activation of atom transfer radical polymerization by Cu(i) complexes. Chemical Communications, 2011, 47, 3580.	4.1	103
101	Estimation of Standard Reduction Potentials of Halogen Atoms and Alkyl Halides. Journal of Physical Chemistry B, 2011, 115, 678-684.	2.6	175
102	Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA. Water Research, 2011, 45, 2122-2130.	11.3	82
103	One-pot synthesis of benzoic acid by electrocatalytic reduction of bromobenzene in the presence of CO2. Electrochemistry Communications, 2011, 13, 810-813.	4.7	37
104	Mechanism of Carbonâ^'Halogen Bond Reductive Cleavage in Activated Alkyl Halide Initiators Relevant to Living Radical Polymerization: Theoretical and Experimental Study. Journal of the American Chemical Society, 2011, 133, 6254-6264.	13.7	140
105	Electrochemically Mediated Atom Transfer Radical Polymerization. Science, 2011, 332, 81-84.	12.6	724
106	Silver Nanoparticle Arrays on a DVD-Derived Template: An easy&cheap SERS Substrate. Plasmonics, 2011, 6, 725-733.	3.4	41
107	Controlled Aqueous Atom Transfer Radical Polymerization with Electrochemical Generation of the Active Catalyst. Angewandte Chemie - International Edition, 2011, 50, 11391-11394.	13.8	205
108	Estimation of standard reduction potentials of alkyl radicals involved in atom transfer radical polymerization. Electrochimica Acta, 2010, 55, 8312-8318.	5.2	92

#	Article	IF	CITATIONS
109	Thermodynamic Properties of Copper Complexes Used as Catalysts in Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 9257-9267.	4.8	130
110	Exhaustive depletion of recalcitrant chromium fractions in a real wastewater. Chemosphere, 2010, 78, 620-625.	8.2	9
111	Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag. Journal of Applied Electrochemistry, 2009, 39, 2217-2225.	2.9	80
112	Is glassy carbon a really inert electrode material for the reduction of carbon–halogen bonds?. Electrochemistry Communications, 2009, 11, 1932-1935.	4.7	44
113	Voltammetric investigation of the dissociative electron transfer to polychloromethanes at catalytic and non-catalytic electrodes. Electrochimica Acta, 2009, 54, 3235-3243.	5.2	66
114	Electrochemical hydrodehalogenation of polychloromethanes at silver and carbon electrodes. Applied Catalysis B: Environmental, 2009, 88, 479-489.	20.2	91
115	New Insights into Electrocatalysis and Dissociative Electron Transfer Mechanisms: The Case of Aromatic Bromides. Journal of Physical Chemistry C, 2009, 113, 14983-14992.	3.1	80
116	Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects. Macromolecules, 2009, 42, 6348-6360.	4.8	215
117	Electrocatalytic carboxylation of chloroacetonitrile at a silver cathode for the synthesis of cyanoacetic acid. Electrochimica Acta, 2008, 54, 634-642.	5.2	46
118	Electrocarboxylation of benzyl chlorides at silver cathode at the preparative scale level. Electrochimica Acta, 2008, 53, 2514-2528.	5.2	69
119	Ab Initio Evaluation of the Thermodynamic and Electrochemical Properties of Alkyl Halides and Radicals and Their Mechanistic Implications for Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2008, 130, 12762-12774.	13.7	274
120	Dissociative electron transfer to organic chlorides: Electrocatalysis at metal cathodes. Physical Chemistry Chemical Physics, 2008, 10, 2409.	2.8	138
121	Electrocarboxylation of aromatic ketones: Influence of operative parameters on the competition between ketyl and ring carboxylation. Journal of Electroanalytical Chemistry, 2007, 609, 8-16.	3.8	43
122	Relevance of electron transfer mechanism in electrocatalysis: the reduction of organic halides at silver electrodes. Chemical Communications, 2006, , 344-346.	4.1	99
123	Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride. Electrochemistry Communications, 2006, 8, 1707-1712.	4.7	105
124	Electrochemical reduction of benzyl halides at a silver electrode. Electrochimica Acta, 2006, 51, 4956-4964.	5.2	117
125	The solvent effect in the electrocatalytic reduction of organic bromides on silver. Journal of Electroanalytical Chemistry, 2006, 593, 47-56.	3.8	77
126	One- versus two-electron reaction pathways in the electrocatalytic reduction of benzyl bromide at silver cathodes. Tetrahedron Letters, 2006, 47, 7735-7739.	1.4	46

#	Article	IF	CITATIONS
127	Electrocatalytic reduction of arylethyl chlorides at silver cathodes in the presence of carbon dioxide: Synthesis of 2-arylpropanoic acids. Journal of Electroanalytical Chemistry, 2005, 581, 38-45.	3.8	59
128	The influence of aluminium cations on electrocarboxylation processes in undivided cells with Al sacrificial anodes. Journal of Electroanalytical Chemistry, 2005, 585, 220-229.	3.8	22
129	Electrocatalytic synthesis of 6-aminonicotinic acid at silver cathodes under mild conditions. Electrochemistry Communications, 2004, 6, 627-631.	4.7	71
130	Homogeneous Reduction of Haloacetonitriles by Electrogenerated Aromatic Radical Anions: Determination of the Reduction Potential of •CH2CN. Journal of Physical Chemistry A, 2004, 108, 4180-4186.	2.5	54
131	Homogeneous electron transfer catalysis in the electrochemical carboxylation of arylethyl chlorides. Journal of Electroanalytical Chemistry, 2003, 541, 93-101.	3.8	34
132	Mechanism of the Electrochemical Carboxylation of Aromatic Ketones in Dimethylformamide. Collection of Czechoslovak Chemical Communications, 2003, 68, 1379-1394.	1.0	16
133	Dissociative Electron Transfer to Haloacetonitriles. An Example of the Dependency of In-Cage Ion-Radical Interactions upon the Leaving Group. Journal of the American Chemical Society, 2002, 124, 13533-13539.	13.7	131
134	Electrochemical Synthesis of Cyanoacetic Acid from Chloroacetonitrile and Carbon Dioxide. Journal of the Electrochemical Society, 2002, 149, D113.	2.9	47
135	Electrocatalytic carboxylation of benzyl chlorides at silver cathodes in acetonitrile. Chemical Communications, 2002, , 2798-2799.	4.1	99
136	Estimation of the standard reduction potentials of some 1-arylethyl radicals in acetonitrile. Electrochemistry Communications, 2002, 4, 767-772.	4.7	18
137	Electrochemical reduction and carboxylation of halobenzophenones. Journal of Electroanalytical Chemistry, 2002, 526, 41-52.	3.8	53
138	Nickel(I)(salen)-electrocatalyzed reduction of benzyl chlorides in the presence of carbon dioxide. Journal of Electroanalytical Chemistry, 2001, 507, 124-134.	3.8	69
139	Evidence for Large Inner Reorganization Energies in the Reduction of Diaryl Disulfides:Â Toward a Mechanistic Link between Concerted and Stepwise Dissociative Electron Transfers?. Journal of the American Chemical Society, 1999, 121, 1750-1751.	13.7	79
140	Electrochemical carboxylation of arylmethyl chlorides catalysed by [Co(salen)][H2salen =N,N′-bis(salicylidene)ethane-1,2-diamine]. Journal of the Chemical Society Dalton Transactions, 1996, , 1613-1618.	1.1	45
141	Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 289, 203-215.	0.1	170