Mengyan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6063392/publications.pdf

Version: 2024-02-01

293460 388640 1,613 37 24 36 h-index citations g-index papers 37 37 37 2040 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	<i>Serratia</i> spp. Are Responsible for Nitrogen Fixation Fueled by As(III) Oxidation, a Novel Biogeochemical Process Identified in Mine Tailings. Environmental Science & En	4.6	46
2	Spatiotemporal correlations between water quality and microbial community of typical inflow river into Taihu Lake, China. Environmental Science and Pollution Research, 2022, 29, 63722-63734.	2.7	3
3	Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. Water Research, 2022, 219, 118542.	5.3	12
4	AEESP Spotlight: Mid 2022. Environmental Engineering Science, 2022, 39, 584-585.	0.8	0
5	Effective removal of odor substances using intimately coupled photocatalysis and biodegradation system prepared with the silane coupling agent (SCA)-enhanced TiO2 coating method. Water Research, 2021, 188, 116569.	5.3	29
6	Editorial: New Insights Into the Biodegradation of Organic Contaminants in Subsurface Ecosystems: Approaches and Achievements of the Multiomics Era. Frontiers in Microbiology, 2021, 12, 650615.	1.5	2
7	Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. Science of the Total Environment, 2021, 774, 145118.	3.9	25
8	Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. Ecotoxicology and Environmental Safety, 2021, 217, 112206.	2.9	17
9	Composite biologically active filter (BAF) with zeolite, granular activated carbon, and suspended biological carrier for treating algae-laden raw water. Journal of Water Process Engineering, 2021, 42, 102188.	2.6	11
10	Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. Science of the Total Environment, 2021, 791, 148145.	3.9	29
11	Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. Journal of Hazardous Materials Letters, 2021, 2, 100014.	2.0	53
12	Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Science of the Total Environment, 2021, 798, 149191.	3.9	33
13	Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. Environmental Science & Envi	4.6	29
14	Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic <i>Azoarcus</i> sp. Strain DD4. Applied and Environmental Microbiology, 2020, 86, .	1.4	26
15	Membrane-Disrupting Nanofibrous Peptide Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 4657-4670.	2.6	38
16	Complete Genome Sequence of <i>Azoarcus</i> sp. Strain DD4, a Gram-Negative Propanotroph That Degrades 1,4-Dioxane and 1,1-Dichloroethylene. Microbiology Resource Announcements, 2019, 8, .	0.3	7
17	Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Applied Microbiology and Biotechnology, 2018, 102, 3375-3386.	1.7	19
18	A Novel Propane Monooxygenase Initiating Degradation of 1,4-Dioxane by <i>Mycobacterium dioxanotrophicus</i> PH-06. Environmental Science and Technology Letters, 2018, 5, 86-91.	3.9	53

#	Article	IF	Citations
19	An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance. Environmental Engineering Science, 2018, 35, 1005-1011.	0.8	47
20	Synchronic Biotransformation of 1,4-Dioxane and 1,1-Dichloroethylene by a Gram-Negative Propanotroph <i>Azoarcus</i> sp. DD4. Environmental Science and Technology Letters, 2018, 5, 526-532.	3.9	37
21	Microbial community analysis in biologically active filters exhibiting efficient removal of emerging contaminants and impact of operational conditions. Science of the Total Environment, 2018, 640-641, 1455-1464.	3.9	23
22	1,4â€Dioxaneâ€degrading consortia can be enriched from uncontaminated soils: prevalence of <i>Mycobacterium</i> and soluble diâ€iron monooxygenase genes. Microbial Biotechnology, 2018, 11, 189-198.	2.0	43
23	Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. Bioresource Technology, 2017, 240, 98-105.	4.8	17
24	Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. Water Research, 2017, 112, 217-225.	5. 3	37
25	Whole-Genome Sequence of the 1,4-Dioxane-Degrading Bacterium <i>Mycobacterium dioxanotrophicus PH-06. Genome Announcements, 2017, 5, .</i>	0.8	19
26	Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community. Bioresource Technology, 2016, 218, 1037-1045.	4.8	29
27	Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 2016, 82, 808-815.	1.4	99
28	Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid–liquid extraction/auto solidâ€phase extraction and highâ€performance liquid chromatography with fluorescence detection. Journal of Separation Science, 2015, 38, 3494-3501.	1.3	14
29	Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California. Biodegradation, 2015, 26, 39-50.	1.5	30
30	Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chemical Engineering Journal, 2015, 259, 153-160.	6.6	182
31	Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environmental Toxicology and Chemistry, 2014, 33, 2234-2239.	2.2	35
32	Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 2014, 48, 317-325.	5. 3	155
33	The Abundance of Tetrahydrofuran/Dioxane Monooxygenase Genes (<i>thmA</i> / <i>dxmA</i>) and 1,4-Dioxane Degradation Activity Are Significantly Correlated at Various Impacted Aquifers. Environmental Science and Technology Letters, 2014, 1, 122-127.	3.9	49
34	Widespread Distribution of Soluble Di-Iron Monooxygenase (SDIMO) Genes in Arctic Groundwater Impacted by 1,4-Dioxane. Environmental Science & Environm	4.6	51
35	Rapid Analysis of 1,4â€Dioxane in Groundwater by Frozen Microâ€Extraction with Gas Chromatography/Mass Spectrometry. Ground Water Monitoring and Remediation, 2011, 31, 70-76.	0.6	38
36	Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environmental Pollution, 2010, 158, 514-519.	3.7	207

#	Article	IF	CITATIONS
37	1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Research, 2010, 44, 2894-2900.	5.3	69