
## Hirotoshi Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062669/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                      | IF  | CITATIONS |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Compact and efficient basis sets of s- and p-block elements for model core potential method. Journal of Chemical Physics, 2005, 122, 074104.                                 | 1.2 | 65        |
| 2 | Excited-state intramolecular proton transfer in photochromic jet-cooled N-salicylideneaniline.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2002, 154, 33-39. | 2.0 | 54        |
| 3 | Fragment molecular orbital calculations on large scale systems containing heavy metal atom.<br>Chemical Physics Letters, 2006, 427, 159-165.                                 | 1.2 | 53        |

Electronic band structure calculations on thin films of the L21 full Heusler alloys X2YSi (X, Y = Mn,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 3

| 5  | Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion.<br>Chemical Physics Letters, 2010, 490, 41-45.                                                                                                                   | 1.2 | 35 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 6  | Revised model core potentials for third-row transition–metal atoms from Lu to Hg. Chemical Physics<br>Letters, 2009, 476, 317-322.                                                                                                                                | 1.2 | 31 |
| 7  | Experimental and Theoretical Approaches Toward Anionâ€Responsive Tripod–Lanthanide Complexes:<br>Mixedâ€Donor Ligand Effects on Lanthanide Complexation and Luminescence Sensing Profiles. Chemistry<br>- A European Journal, 2008, 14, 5258-5266.                | 1.7 | 28 |
| 8  | Origin of high oxygen reduction reaction activity of Pt12 and strategy to obtain better catalyst using sub-nanosized Pt-alloy clusters. Scientific Reports, 2017, 7, 45381.                                                                                       | 1.6 | 27 |
| 9  | Theoretical study of hydration models of trivalent rare-earth ions using model core potentials.<br>Computational and Theoretical Chemistry, 2010, 949, 28-35.                                                                                                     | 1.5 | 26 |
| 10 | Revised model core potentials for first-row transition-metal atoms from Sc to Zn. Chemical Physics<br>Letters, 2008, 452, 210-214.                                                                                                                                | 1.2 | 23 |
| 11 | Differences in hydration between cis- and trans-platin: Quantum insights by ab initio fragment<br>molecular orbital-based molecular dynamics (FMO-MD). Computational and Theoretical Chemistry,<br>2012, 986, 30-34.                                              | 1.1 | 21 |
| 12 | Roomâ€Temperature Phosphorescence Emitters Exhibiting Red to Nearâ€Infrared Emission Derived from<br>Intermolecular Chargeâ€Transfer Triplet States of Naphthalenediimideâ^'Halobenzoate Triad Molecules.<br>Chemistry - A European Journal, 2021, 27, 9535-9541. | 1.7 | 21 |
| 13 | Theoretical study on vibrational circular dichroism spectra of tris(acetylacetonato)metal(III)<br>complexes: Anharmonic effects and low-lying excited states. Journal of Chemical Physics, 2011, 135,<br>084506.                                                  | 1.2 | 20 |
| 14 | Structure and intermolecular hydrogen bond of jet-cooled p-aminophenol–(H2O)1 studied by<br>electronic and IR-dip spectroscopy and density functional theory calculations. Chemical Physics, 2002,<br>277, 105-115.                                               | 0.9 | 19 |
| 15 | Revised model core potentials for second-row transition metal atoms from Y to Cd. Chemical Physics<br>Letters, 2008, 463, 230-234.                                                                                                                                | 1.2 | 17 |
| 16 | Density functional theory calculations of iodine cluster anions: Structures, chemical bonding nature, and vibrational spectra. Computational and Theoretical Chemistry, 2011, 973, 69-75.                                                                         | 1.1 | 16 |
| 17 | Application of fragment molecular orbital scheme to silicon-containing systems. Chemical Physics<br>Letters, 2006, 430, 361-366.                                                                                                                                  | 1.2 | 15 |
| 18 | CASSCF and CASPT2 calculations for lanthanide trihalides LnX3 using model core potentials. Chemical Physics Letters, 2009, 474, 28-32.                                                                                                                            | 1.2 | 15 |

Hirotoshi Mori

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Theoretical Study on the Hydration Structure of Divalent Radium Ion Using Fragment Molecular<br>Orbital–Molecular Dynamics (FMO–MD) Simulation. Journal of Solution Chemistry, 2014, 43, 1669-1675.                                                      | 0.6 | 15        |
| 20 | DFT studies of the electronic structure and geometry of 18-crown-6, hexaaza[18]annulene, and their complexes with cations of the heavier alkali and alkaline earth metals. Inorganica Chimica Acta, 2008, 361, 2166-2171.                                | 1.2 | 14        |
| 21 | The Hydrogen Bond of the One-Dimensional Assembled Complex [Ni(2,2′-biimidazole)2]: The Effect of<br>Transition Metals on the Hydrogen Bond. Bulletin of the Chemical Society of Japan, 2004, 77, 687-690.                                               | 2.0 | 13        |
| 22 | 4f-in-core model core potentials for trivalent lanthanides. Chemical Physics Letters, 2011, 510, 261-266.                                                                                                                                                | 1.2 | 13        |
| 23 | Theoretical study of low-lying electronic states of Mn2 using a newly developed relativistic model core potential. Chemical Physics Letters, 2008, 462, 23-26.                                                                                           | 1.2 | 12        |
| 24 | Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes. Chemical Physics Letters, 2012, 521, 150-156.                                                                                       | 1.2 | 12        |
| 25 | Model Core Potential and All-Electron Studies of Molecules Containing Rare Gas Atoms <sup>â€</sup> .<br>Journal of Physical Chemistry A, 2010, 114, 8786-8792.                                                                                           | 1.1 | 11        |
| 26 | Theoretical study of lanthanide mono cation-mediated C–F bond activation. Chemical Physics, 2011, 380, 48-53.                                                                                                                                            | 0.9 | 11        |
| 27 | Synthesis and Conformational Analysis of AlternatelyN-Alkylated Aromatic Amide Oligomers. Journal of Organic Chemistry, 2018, 83, 14338-14349.                                                                                                           | 1.7 | 11        |
| 28 | Recent Advances in Fragment Molecular Orbital-Based Molecular Dynamics (FMO-MD) Simulations. , 0,                                                                                                                                                        |     | 11        |
| 29 | Theoretical study of interactions between the Si surface and metal atoms. Surface Science, 2002, 514, 383-388.                                                                                                                                           | 0.8 | 10        |
| 30 | A Theoretical Study of the Physicochemical Mechanisms Associated with DNA Recognition Modulation in Artificial Zinc-Finger Proteins. Journal of Physical Chemistry B, 2011, 115, 4774-4780.                                                              | 1.2 | 10        |
| 31 | Electronic Structures of Platinum(II) Complexes with 2-Arylpyridine and 1,3-Diketonate Ligands: A<br>Relativistic Density Functional Study on Photoexcitation and Phosphorescent Properties. Journal of<br>Physical Chemistry C, 2014, 118, 12443-12449. | 1.5 | 10        |
| 32 | Stereoselective interactions as manifested by vibrational circular dichroism spectra: the interplay<br>between chiral metal complexes co-adsorbed in a montmorillonite clay. Physical Chemistry Chemical<br>Physics, 2018, 20, 25421-25427.              | 1.3 | 10        |
| 33 | The ABINIT-MP Program. , 2021, , 53-67.                                                                                                                                                                                                                  |     | 10        |
| 34 | LIF and IR Dip Spectra of Jet-Cooled p-Aminophenolâ^'M (M = CO, N2): Hydrogen-Bonded or Van der<br>Waals-Bonded Structure?. Journal of Physical Chemistry A, 2002, 106, 4886-4890.                                                                       | 1.1 | 9         |
| 35 | Computational research of the electronic structure of benzene trimer cation by ab initio method.<br>Chemical Physics Letters, 2007, 438, 157-161.                                                                                                        | 1.2 | 9         |
| 36 | Effective Fragment Potential Version 2 - Molecular Dynamics (EFP2-MD) Simulation for Investigating Solution Structures of Ionic Liquids. Chemistry Letters, 2016, 45, 1009-1011.                                                                         | 0.7 | 9         |

Hirotoshi Mori

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Theoretical study on crystal-facet dependency of hydrogen storage rate for shape controlled Pd<br>nano particles. Chemical Physics Letters, 2016, 644, 255-260.                                                             | 1.2 | 9         |
| 38 | Development of Helical Aromatic Amide Foldamers with a Diphenylacetylene Backbone. Journal of<br>Organic Chemistry, 2020, 85, 2019-2039.                                                                                    | 1.7 | 9         |
| 39 | A Quantum Chemical Study on Hydration of Ra (II): Comparison with the Other Hydrated Divalent<br>Alkaline Earth Metal Ions. Journal of Computer Chemistry Japan, 2014, 13, 105-113.                                         | 0.0 | 9         |
| 40 | Effects of intermolecular interaction on proton tunneling: Theoretical study on two-dimensional potential energy surfaces for 9-hydroxyphenalenone-CO2/H2O complexes. Journal of Chemical Physics, 2003, 119, 4159-4165.    | 1.2 | 8         |
| 41 | Revised model core potentials of sâ€block elements. Journal of Computational Chemistry, 2007, 28,<br>2424-2430.                                                                                                             | 1.5 | 8         |
| 42 | Conformational Properties of Aromatic Oligoamides Bearing Pyrrole Rings. Journal of Organic Chemistry, 2018, 83, 4606-4617.                                                                                                 | 1.7 | 8         |
| 43 | Theoretical Design of a Molecular Switch with Controlled Hydrogen Bonds: Electronic and<br>Vibrational Spectra of [Co(2,2′-biimidazole)(C6H4O2)(NH3)2]2. Bulletin of the Chemical Society of Japan,<br>2007, 80, 1335-1340. | 2.0 | 7         |
| 44 | Theoretical Strategy for Improving CO2 Absorption of Mixed Ionic Liquids Focusing on the Anion<br>Effect: A Comprehensive COSMO-RS Study. Industrial & Engineering Chemistry Research, 2020, 59,<br>8848-8854.              | 1.8 | 7         |
| 45 | Molecular orbital study for Na, Mg, and Al adsorption on the Si (111) surface. Computational and Theoretical Chemistry, 2003, 630, 225-232.                                                                                 | 1.5 | 6         |
| 46 | Theoretical Design of a New Optical Durable Molecular Switch. Chemistry Letters, 2004, 33, 758-759.                                                                                                                         | 0.7 | 6         |
| 47 | Cyclic Heterometallic Interactions formed from a Flexible Tripeptide Complex Showing Effective<br>Antiferromagnetic Spin Coupling. Angewandte Chemie - International Edition, 2021, 60, 5179-5183.                          | 7.2 | 6         |
| 48 | Comprehensive Physical Chemistry Learning Based on Blended Learning: A New Laboratory Course.<br>Journal of Chemical Education, 2021, 98, 3864-3870.                                                                        | 1.1 | 6         |
| 49 | Fragment molecular orbitalâ~'based molecular dynamics (FMO-MD) simulations on hydrated Cu(II) ion.<br>Chem-Bio Informatics Journal, 2014, 14, 1-13.                                                                         | 0.1 | 5         |
| 50 | Adaptive Application Composition in Quantum Chemistry. Lecture Notes in Computer Science, 2009, ,<br>194-211.                                                                                                               | 1.0 | 5         |
| 51 | POSSIBILITY OF MOLECULAR-SWITCH WITH CONTROLLED HYDROGEN BOND: UTILITY OF COMBINATION OF 2,2â€2-BIIMIDAZOLE AND REDOX-ACTIVE LIGAND. Journal of Theoretical and Computational Chemistry, 2005, 04, 333-344.                 | 1.8 | 4         |
| 52 | Calibration of new model core potentials for main group elements. International Journal of Quantum<br>Chemistry, 2009, 109, 3235-3245.                                                                                      | 1.0 | 4         |
| 53 | Comparison of Inhibitory Activities of Stereo-Isomers of Cyclic Phosphatidic Acid (cPA) on Autotaxin.<br>Cytologia, 2011, 76, 73-80.                                                                                        | 0.2 | 4         |
| 54 | Importance of spin–orbit coupling effect and solvent effect in electronic transition assignments of<br>Ptll complexes: In the case of cis/trans-[PtIICl2(NH3)2]. Journal of Molecular Structure, 2013, 1035,<br>218-223.    | 1.8 | 4         |

HIROTOSHI MORI

| #  | Article                                                                                                                                                                                                                                                                                                           | IF         | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 55 | Applicability of effective fragment potential version 2 – Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents. Chemical Physics Letters, 2018, 694, 82-85.                                                                                                                | 1.2        | 4         |
| 56 | Synthesis, X-ray structure, photophysical properties, and theoretical studies of six-membered<br>cyclometalated iridium( <scp>iii</scp> ) complexes: revisiting lr(pnbi) <sub>2</sub> (acac). Dalton<br>Transactions, 2019, 48, 15212-15219.                                                                      | 1.6        | 4         |
| 57 | Theoretical quest for photoconversion molecules having opposite directions of the electric dipole moment in S[sub 0] and S[sub 1] states. Journal of Chemical Physics, 2009, 130, 184311.                                                                                                                         | 1.2        | 3         |
| 58 | Applicability of Effective Fragment Potential Version 2-Molecular Dynamics (EFP2-MD) Simulations for<br>Predicting Dynamic Liquid Properties Including the Supercritical Fluid Phase. Journal of Physical<br>Chemistry B, 2019, 123, 194-200.                                                                     | 1.2        | 3         |
| 59 | Electron affinities of heavier phosphoryl and thiophosphoryl halides APX3 (A = O, S and X = Br, I).<br>Journal of Computational Chemistry, 2007, 28, 2027-2033.                                                                                                                                                   | 1.5        | 2         |
| 60 | Functional Group-Directed Photochemical Reactions of Aromatic Alcohols, Amines, and Thiols<br>Triggered by Excited-State Hydrogen Detachment: Additive-free Oligomerization, Disulfidation, and<br>C(sp <sup>2</sup> )–H Carboxylation with CO <sub>2</sub> . Journal of Organic Chemistry, 2021, 86,<br>959-969. | 1.7        | 2         |
| 61 | Roomâ€Temperature Phosphorescence Emitters Exhibiting Red to Nearâ€Infrared Emission Derived from<br>Intermolecular Chargeâ€Transfer Triplet States of Naphthalenediimide–Halobenzoate Triad Molecules.<br>Chemistry - A European Journal, 2021, 27, 9465-9465.                                                   | 1.7        | 2         |
| 62 | ELECTRONIC STRUCTURE AND PHOTOCHEMISTRY OF INORGANIC PHOTOCHROMIC COMPLEX<br>[Cu(N,N′-DIETHYLETHYLENEDIAMINE)2]2+: PLANAR–TETRAHEDRAL GEOMETRY CHANGE ACCOMPANIED W<br>d9–d10 ELECTRONIC TRANSITION. Journal of Theoretical and Computational Chemistry, 2006, 05,<br>887-894.                                    | ITH<br>1.8 | 1         |
| 63 | Photo-Induced State Conversion Mechanism of an Optically Durable Molecular Memory with<br>Controlled Hydrogen Bonding: A Spin–Orbit CI Study of [{Co(2,2′-biimidazole)(C6H4O2)(NH3)2}2].<br>Bulletin of the Chemical Society of Japan, 2008, 81, 235-240.                                                         | 2.0        | 0         |
| 64 | Fragment Molecular Orbital-Based Molecular Dynamics Study on Hydrated Ln(III) Ions. , 2015, , .                                                                                                                                                                                                                   |            | 0         |
| 65 | Cyclic Heterometallic Interactions formed from a Flexible Tripeptide Complex Showing Effective Antiferromagnetic Spin Coupling. Angewandte Chemie, 2021, 133, 5239-5243.                                                                                                                                          | 1.6        | 0         |
| 66 | Computational Design of Proton-Electron Coupling System for Optically Durable Molecular Memory.<br>, 2019, , 794-798.                                                                                                                                                                                             |            | 0         |