Ken J Forbes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062641/publications.pdf

Version: 2024-02-01

394421 501196 1,082 30 19 28 citations h-index g-index papers 32 32 32 1481 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genomic diversity and antimicrobial resistance of Campylobacter spp. from humans and livestock in Nigeria. Journal of Biomedical Science, 2022, 29, 7.	7.0	6
2	Estimated Dissemination Ratioâ€"A Practical Alternative to the Reproduction Number for Infectious Diseases. Frontiers in Public Health, 2021, 9, 675065.	2.7	0
3	Importance of untested infectious individuals for interventions to suppress COVID-19. Scientific Reports, 2021, 11, 20728.	3.3	4
4	Reply to Baba and Kanamori. Clinical Infectious Diseases, 2020, 71, 1353-1355.	5.8	0
5	Mining whole genome sequence data to efficiently attribute individuals to source populations. Scientific Reports, 2020, 10, 12124.	3.3	10
6	Agricultural intensification and the evolution of host specialism in the enteric pathogen <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11018-11028.	7.1	50
7	Variability in growth responses of non-O157 EHEC isolates in leafy vegetables, sprouted seeds and soil extracts occurs at the isolate level. FEMS Microbiology Letters, 2020, 367, .	1.8	6
8	Increasing prevalence of a fluoroquinolone resistance mutation amongst Campylobacter jejuni isolates from four human infectious intestinal disease studies in the United Kingdom. PLoS ONE, 2020, 15, e0227535.	2.5	9
9	Challenges of biofilm control and utilization: lessons from mathematical modelling. Journal of the Royal Society Interface, 2019, 16, 20190042.	3.4	36
10	Influence of Plant Species, Tissue Type, and Temperature on the Capacity of Shiga-Toxigenic <i>Escherichia coli</i> To Colonize, Grow, and Be Internalized by Plants. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
11	Climate, human behaviour or environment: individual-based modelling of Campylobacter seasonality and strategies to reduce disease burden. Journal of Translational Medicine, 2019, 17, 34.	4.4	11
12	Phylogeographic Analysis Reveals Multiple International transmission Events Have Driven the Global Emergence of Escherichia coli O157:H7. Clinical Infectious Diseases, 2019, 69, 428-437.	5.8	26
13	LiSEQ – whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microbial Genomics, 2019, 5, .	2.0	64
14	Domestication of Campylobacter jejuni NCTC 11168. Microbial Genomics, 2019, 5, .	2.0	26
15	Novel Sampling Method for Assessing Human-Pathogen Interactions in the Natural Environment Using Boot Socks and Citizen Scientists, with Application to Campylobacter Seasonality. Applied and Environmental Microbiology, 2017, 83, .	3.1	12
16	Genomic plasticity and rapid host switching can promote the evolution of generalism: a case study in the zoonotic pathogen Campylobacter. Scientific Reports, 2017, 7, 9650.	3.3	34
17	Comparative Genomic Analysis Identifies a Campylobacter Clade Deficient in Selenium Metabolism. Genome Biology and Evolution, 2017, 9, 1843-1858.	2.5	20
18	Proteomic variation and diversity in clinical Streptococcus pneumoniae isolates from invasive and non-invasive sites. PLoS ONE, 2017, 12, e0179075.	2.5	5

#	Article	lF	CITATIONS
19	Comparative Genomics of <i>Campylobacter fetus < li>from Reptiles and Mammals Reveals Divergent Evolution in Host-Associated Lineages. Genome Biology and Evolution, 2016, 8, 2006-2019.</i>	2.5	25
20	Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach. Scientific Reports, 2016, 6, 29043.	3.3	33
21	Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production. BMC Genomics, 2016, 17, 713.	2.8	18
22	Campylobacter fetus Subspecies Contain Conserved Type IV Secretion Systems on Multiple Genomic Islands and Plasmids. PLoS ONE, 2016, 11, e0152832.	2.5	30
23	Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association. Scientific Reports, 2015, 5, 14145.	3.3	49
24	Cryptic ecology among host generalist <i>Campylobacter jejuni</i> in domestic animals. Molecular Ecology, 2014, 23, 2442-2451.	3.9	131
25	Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. International Journal of Food Microbiology, 2014, 187, 57-72.	4.7	83
26	The Heterogeneity, Distribution, and Environmental Associations of Borrelia burgdorferi Sensu Lato, the Agent of Lyme Borreliosis, in Scotland. Frontiers in Public Health, 2014, 2, 129.	2.7	30
27	Progressive genomeâ€wide introgression in agricultural <i>Campylobacter coli</i> . Molecular Ecology, 2013, 22, 1051-1064.	3.9	128
28	Niche segregation and genetic structure of <i>Campylobacter jejuni</i> populations from wild and agricultural host species. Molecular Ecology, 2011, 20, 3484-3490.	3.9	105
29	The importance of passerine birds as tick hosts and in the transmission of <i>Borrelia burgdorferi,</i> the agent of Lyme disease: a case study from Scotland. Ibis, 2011, 153, 293-302.	1.9	27
30	Evolution of an Agriculture-Associated Disease Causing Campylobacter coli Clade: Evidence from National Surveillance Data in Scotland. PLoS ONE, 2010, 5, e15708.	2.5	75