Jinlong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062639/publications.pdf Version: 2024-02-01

ΙΝΙΟΝΟ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Porous ceramics with nearâ€zero shrinkage and low thermal conductivity from hazardous secondary aluminum dross. Journal of the American Ceramic Society, 2022, 105, 3197-3210.	1.9	18
2	Mullite ceramic foams with tunable pores from dual-phase sol nanoparticle-stabilized foams. Journal of the European Ceramic Society, 2022, 42, 1703-1711.	2.8	16
3	Fabrication of high-performance graphene oxide/CuO/Cu2O film-coated copper foam for interfacial solar-driven water evaporation. Journal of Materials Science, 2022, 57, 3322-3336.	1.7	9
4	Ni@CNTs/Al ₂ O ₃ Ceramic Composites with Interfacial Solder Strengthen the Segregated Network for High Toughness and Excellent Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2022, 14, 4443-4455.	4.0	20
5	Facile Method for Preparing Hierarchical Al ₂ 0 ₃ –Glass Foam Ceramics with Superior Thermal Insulating Property. Langmuir, 2022, 38, 1141-1150.	1.6	3
6	Synthesis of ultraâ€fine rareâ€earthâ€zirconate highâ€entropy ceramic fibers via electrospinning. Journal of the American Ceramic Society, 2022, 105, 4449-4456.	1.9	14
7	Directly growing nanowire-assembled nanofibrous ceramic foams with multi-lamellar structure via freeze-casting process. Journal of the European Ceramic Society, 2021, 41, 1041-1047.	2.8	11
8	Effect of high temperature on the mechanical properties of hierarchical porous cenosphere/geopolymer composite foams. International Journal of Applied Ceramic Technology, 2021, 18, 817-829.	1.1	12
9	Unexpected phenomenon in a conventional system: synthesis of raspberry-like hollow periodic mesoporous organosilica with controlled structure in one continuous step. New Journal of Chemistry, 2021, 45, 6651-6660.	1.4	2
10	An enhancement on supercapacitor properties of porous CoO nanowire arrays by microwave-assisted regulation of the precursor. Nanotechnology, 2021, 32, 195707.	1.3	6
11	Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resources, Conservation and Recycling, 2021, 166, 105373.	5.3	26
12	Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge. Ceramics International, 2021, 47, 21599-21609.	2.3	25
13	Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si ₃ N ₄ Nanowires. Nano Letters, 2021, 21, 4167-4175.	4.5	34
14	Reduction for heavy metals in pickling sludge with aluminum nitride in secondary aluminum dross by pyrometallurgy, followed by glass ceramics manufacture. Journal of Hazardous Materials, 2021, 418, 126331.	6.5	32
15	3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure. Journal of the European Ceramic Society, 2020, 40, 930-934.	2.8	47
16	Ultrastrong Hierarchical Porous Materials via Colloidal Assembly and Oxidation of Metal Particles. Advanced Functional Materials, 2020, 30, 2003550.	7.8	31
17	Novel design of microsphere adsorbent for efficient heavy metals adsorption. International Journal of Applied Ceramic Technology, 2020, 17, 2228-2239.	1.1	6
18	Preparation and characterization of glass ceramic foams based on municipal solid waste incineration ashes using secondary aluminum ash as foaming agent. Construction and Building Materials, 2020, 262, 120781.	3.2	58

JINLONG YANG

#	Article	IF	CITATIONS
19	Hierarchically porous ceria with tunable pore structure from particle-stabilized foams. Journal of the European Ceramic Society, 2020, 40, 4366-4372.	2.8	20
20	Mechanically robust ZrO 2 foams with 3D reticular architecture prepared from chemicalâ€modified ZrO 2 powder. Journal of the American Ceramic Society, 2020, 103, 4548-4557.	1.9	3
21	Dependence of photocatalytic performance on interfacial reaction in carbon dots/mesoporous hydroxyapatite nanocomposites. Micro and Nano Letters, 2020, 15, 106-109.	0.6	1
22	Silica foams with ultraâ€large specific surface area structured by hollow mesoporous silica spheres. Journal of the American Ceramic Society, 2019, 102, 955-961.	1.9	25
23	Threeâ€dimensional (3D) flexible nanofibrous network knitting on hierarchical porous architecture. Journal of the American Ceramic Society, 2019, 102, 2977-2986.	1.9	17
24	Novel microâ€spherical Si ₃ N ₄ nanowire sponges from carbonâ€doped silica sol foams via reverse templating method. Journal of the American Ceramic Society, 2019, 102, 962-969.	1.9	15
25	Effect of zeta potential on properties of foamed colloidal suspension. Journal of the European Ceramic Society, 2019, 39, 574-583.	2.8	56
26	Hierarchical Ceramic Foams with 3D Interconnected Network Architecture for Superior High-Temperature Particulate Matter Capture. ACS Applied Materials & Interfaces, 2019, 11, 40585-40591.	4.0	23
27	Nanofibrous Aerogel Bulk Assembled by Cross-Linked SiC/SiO _{<i>x</i>} Core–Shell Nanofibers with Multifunctionality and Temperature-Invariant Hyperelasticity. ACS Nano, 2019, 13, 11603-11612.	7.3	53
28	Low ost, green synthesis and adsorption properties for dyes of novel porous gangue/palygorskite composite microspheres. International Journal of Applied Ceramic Technology, 2019, 16, 1510-1524.	1.1	5
29	A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters. Journal of Environmental Management, 2019, 246, 174-183.	3.8	66
30	Synthesis, Characterization and Adsorption Properties of Low-cost Porous Calcined Dolomite Microspheres for Removal of Dyes. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 507-515.	0.4	8
31	Hierarchical cellular scaffolds fabricated via direct foam writing using gelled colloidal particleâ€stabilized foams as the ink. Journal of the American Ceramic Society, 2019, 102, 6498-6506.	1.9	16
32	Novel design of alumina foams with threeâ€dimensional reticular architecture for effective highâ€ŧemperature particulate matter capture. Journal of the American Ceramic Society, 2019, 102, 5576-5586.	1.9	17
33	Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2019, 2, 2063-2071.	2.5	319
34	Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. Journal of Materials Science, 2019, 54, 4484-4494.	1.7	13
35	Aerogelâ€like ceramic foams with superâ€high porosity and nanoscale cell wall from sol nanoparticles stabilized foams. Journal of the American Ceramic Society, 2019, 102, 3753-3762.	1.9	14
36	Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. Journal of Environmental Management, 2019, 234, 245-252.	3.8	85

JINLONG YANG

#	Article	IF	CITATIONS
37	Preparation of Al2O3-Si3N4 porous ceramics with a cactus-like architecture for potential filters applications. Ceramics International, 2019, 45, 6581-6584.	2.3	14
38	Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 2019, 45, 1464-1467.	2.3	39
39	Microwave-assisted synthesis of Fe-doped NiMnO3 as electrode material for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2019, 23, 63-72.	1.2	22
40	Rational Design of MXene/1Tâ€2H MoS ₂ â€C Nanohybrids for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707578.	7.8	309
41	Structural phase transition and electrical properties of Sr ²⁺ substituted porous <scp>PMN</scp> â€ <scp>PZT</scp> ceramics. Journal of the American Ceramic Society, 2018, 101, 2197-2201.	1.9	3
42	Synthesis of low-cost porous ceramic microspheres from waste gangue for dye adsorption. Journal of Advanced Ceramics, 2018, 7, 30-40.	8.9	42
43	Highly porous barium strontium titanate (<scp>BST</scp>) ceramic foams with low dielectric constant from particleâ€stabilized foams. Journal of the American Ceramic Society, 2018, 101, 1737-1746.	1.9	23
44	Synthesis of novel low ost porous gangue microsphere/geopolymer composites and their adsorption properties for dyes. International Journal of Applied Ceramic Technology, 2018, 15, 1602-1614.	1.1	29
45	TiO ₂ nanotube array with "multi-layer―walled structure and its vulnerability to water. Functional Materials Letters, 2017, 10, 1750019.	0.7	1
46	Doubleâ€Walled ZrO ₂ Nanotube Array: Preparation and Enhanced Photocatalytic Activity. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700239.	0.8	4
47	A novel fabrication method for glass foams with small pore size and controllable pore structure. Journal of the American Ceramic Society, 2017, 100, 5502-5511.	1.9	20
48	Strength enhancement of ultralight aluminaâ€dried foams from particleâ€stabilized foams with assistance of agar and <scp>PVA</scp> . International Journal of Applied Ceramic Technology, 2017, 14, 928-937.	1.1	8
49	Highly reliable yttriaâ€stabilized zirconia prepared by direct coagulation castingâ€high valence counter ions using calcium polyphosphate. International Journal of Applied Ceramic Technology, 2017, 14, 866-872.	1.1	4
50	Preparation of ultra-light ceramic foams from waste glass and fly ash. Advances in Applied Ceramics, 2017, 116, 400-408.	0.6	23
51	Facile preparation of hollowâ€structured mesoporous silica spheres with large and ordered mesochannels. International Journal of Applied Ceramic Technology, 2017, 14, 915-920.	1.1	7
52	Direct coagulation casting of alumina via controlled release of calcium from ammonium polyphosphate chelate complex. Journal of Materials Research, 2016, 31, 154-162.	1.2	4
53	A Novel Way to Prepare Hollow Sphere Ceramics. Journal of the American Ceramic Society, 2014, 97, 3341-3347.	1.9	40
54	Direct coagulation casting of alumina using magnesium citrate as coagulating agent with glycerol diacetate as pH regulator. Journal of Materials Science, 2014, 49, 5564-5570.	1.7	14

JINLONG YANG

#	Article	IF	CITATIONS
55	A new Al2O3 porous ceramic prepared by addition of hollow spheres. Journal of Porous Materials, 2014, 21, 601-609.	1.3	27
56	Direct Coagulation Casting of Alumina Suspension via Controlled Release of High Valence Counterions from Thermoâ€sensitive Liposomes. Journal of the American Ceramic Society, 2013, 96, 62-67.	1.9	13
57	Processing and Properties of Porous <scp>PZT</scp> Ceramics from Particleâ€6tabilized Foams via Gel Casting. Journal of the American Ceramic Society, 2013, 96, 1827-1831.	1.9	30
58	APPLICATION ANALYSIS OF FAR INFRARED CERAMICS IN THE REHABILITATION OF SPORTS INJURY. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350028.	0.3	3
59	Synthesis and properties of polyacrylamide/hollow coal gangue spheres superabsorbent composites. Journal of Applied Polymer Science, 2013, 130, 2184-2187.	1.3	6
60	Properties of Alumina Coagulated Bodies Prepared by Direct Coagulation Casting via High Valence Counter lons (<scp>DCC</scp> â€ <scp>HVCI</scp>). Journal of the American Ceramic Society, 2012, 95, 3415-3420.	1.9	17
61	Pore structure control of Si3N4 ceramics based on particle-stabilized foams. Journal of Porous Materials, 2012, 19, 883-888.	1.3	18
62	Preparation of <scp><scp>Si₃N₄</scp></scp> Foam Ceramics with Nestâ€Like Cell Structure by Particleâ€Stabilized Foams. Journal of the American Ceramic Society, 2012, 95, 1229-1233.	1.9	39
63	Direct Coagulation Casting of Positively Charged Alumina Suspension by Controlled Release of High Valence Counter Ions from Calcium Phosphate. Journal of the American Ceramic Society, 2012, 95, 2155-2160.	1.9	18
64	Direct Coagulation Casting of Alumina Suspension by High Valence Counter Ions Using <scp><scp>Ca</scp></scp> (<scp><scp>IO</scp></scp> sub>3(₂ as Coagulating Agent. Journal of the American Ceramic Society, 2012, 95, 2525-2530.	1.9	30
65	Liquid crystalline epoxy resin modified cyanate ester for high performance electronic packaging. Journal of Polymer Research, 2011, 18, 1441-1450.	1.2	33
66	The study of combustion synthesis of fine-particle Î ³ -lithium aluminate. Journal of Materials Science, 2003, 38, 3883-3888.	1.7	8
67	The effect of deionization on concentrated suspension of silicon nitride. Journal of Materials Science Letters, 2001, 20, 1537-1540.	0.5	2
68	Improving the breakdown strength of rutile capacitor by gelcasting. Journal of Materials Science Letters, 2001, 20, 1285-1288.	0.5	9
69	Surface oxidation to improve water-based gelcasting of silicon nitride. Journal of Materials Science, 2000, 35, 3519-3524.	1.7	38
70	Microstructure and strength modification of relaxor ferroelectric ceramics through microwave sintering for multilayer capacitors. Science in China Series D: Earth Sciences, 1999, 42, 337-341.	0.9	2
71	Zero-valence Fe boosts the activity of Fe–N-C electrocatalyst in oxygen reduction reaction. lonics, 0, , 1.	1.2	0
72	Microstructural transition of poly(vinyl alcohol)-based aerogels in the presence of interpolymer complexes. New Journal of Chemistry, 0, , .	1.4	0