
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Physics Reports, 2019, 791, 1-59.	10.3	389
2	Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy, 2018, 115, 400-410.	4.3	253
3	Vortex shedding suppression and wake control: A review. Ocean Engineering, 2016, 126, 57-80.	1.9	199
4	Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. International Journal of Heat and Mass Transfer, 2017, 109, 1162-1171.	2.5	198
5	Applications of nanofluids in condensing and evaporating systems. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2027-2039.	2.0	187
6	Combination of nanofluid and inserts for heat transfer enhancement. Journal of Thermal Analysis and Calorimetry, 2019, 135, 437-460.	2.0	180
7	A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. Journal of Molecular Liquids, 2016, 220, 1-13.	2.3	161
8	Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. Journal of Magnetism and Magnetic Materials, 2015, 378, 128-137.	1.0	158
9	A review on the applications of porous materials in solar energy systems. Renewable and Sustainable Energy Reviews, 2017, 73, 1198-1210.	8.2	152
10	Potentials of porous materials for energy management in heat exchangers – A comprehensive review. Applied Energy, 2019, 243, 206-232.	5.1	144
11	Porous materials in building energy technologies—A review of the applications, modelling and experiments. Renewable and Sustainable Energy Reviews, 2018, 91, 229-247.	8.2	131
12	Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renewable Energy, 2018, 118, 536-545.	4.3	125
13	A concise review on the role of nanoparticles upon the productivity of solar desalination systems. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1145-1159.	2.0	125
14	Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. Journal of Magnetism and Magnetic Materials, 2017, 439, 358-372.	1.0	124
15	Enhancement of solar still by reticular porous media: Experimental investigation with exergy and economic analysis. Applied Thermal Engineering, 2018, 130, 1341-1348.	3.0	122
16	Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Advanced Powder Technology, 2018, 29, 2243-2254.	2.0	115
17	Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules - an experimental investigation. Desalination, 2017, 420, 106-113.	4.0	109
18	Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors. Progress in Energy and Combustion Science. 2022. 88. 100966.	15.8	108

#	Article	IF	CITATIONS
19	Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications. Applied Energy, 2019, 250, 1491-1547.	5.1	105
20	Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel. Applied Thermal Engineering, 2017, 116, 278-291.	3.0	98
21	Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versusÂnumerical analysis. Renewable Energy, 2015, 74, 448-455.	4.3	94
22	Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct – A numerical study. Applied Thermal Engineering, 2018, 130, 135-148.	3.0	87
23	First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. Journal of Thermal Analysis and Calorimetry, 2019, 135, 177-194.	2.0	87
24	Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Conversion and Management, 2014, 85, 264-271.	4.4	84
25	Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: A sensitivity analysis. Energy Conversion and Management, 2015, 103, 726-738.	4.4	80
26	Convective Heat Transfer and Particle Motion in an Obstructed Duct with Two Side by Side Obstacles by Means of DPM Model. Applied Sciences (Switzerland), 2017, 7, 431.	1.3	80
27	A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing: Process Intensification, 2018, 126, 108-122.	1.8	78
28	An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 2021, 164, 867-875.	4.3	78
29	Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. International Journal of Heat and Mass Transfer, 2013, 63, 91-100.	2.5	75
30	Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1009-1019.	2.0	73
31	Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. Journal of Thermal Analysis and Calorimetry, 2019, 135, 551-563.	2.0	72
32	Optimization of partitioning inside a single slope solar still for performance improvement. Desalination, 2016, 395, 79-91.	4.0	71
33	Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges. Solar Energy, 2018, 171, 929-952.	2.9	70
34	Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 665-684.	1.6	67
35	Heat transfer enhancement and pressure drop penalty in porous solar heaters: Numerical simulations. Solar Energy, 2016, 123, 145-159.	2.9	66
36	Discrete particle model for convective AL 2 O 3 –water nanofluid around a triangular obstacle. Applied Thermal Engineering, 2016, 100, 39-54.	3.0	64

#	Article	IF	CITATIONS
37	Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis. Solar Energy, 2017, 153, 41-50.	2.9	63
38	Numerical Simulation of Forced Convective Heat Transfer Past a Square Diamond-Shaped Porous Cylinder. Transport in Porous Media, 2014, 102, 207-225.	1.2	62
39	Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. International Journal of Heat and Mass Transfer, 2017, 109, 812-823.	2.5	62
40	Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle. Energy Conversion and Management, 2015, 97, 212-223.	4.4	61
41	Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1189-1200.	2.0	59
42	Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy, 2015, 88, 385-398.	4.5	58
43	Magnetohydrodynamics Flow and Heat Transfer Around a Solid Cylinder Wrapped With a Porous Ring. Journal of Heat Transfer, 2014, 136, .	1.2	55
44	Sensitivity Analysis of Entropy Generation in Nanofluid Flow inside a Channel by Response Surface Methodology. Entropy, 2016, 18, 52.	1.1	54
45	EHD in thermal energy systems - A review of the applications, modelling, and experiments. Journal of Electrostatics, 2017, 90, 1-14.	1.0	54
46	Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow - A two-way coupling of Eulerian-Lagrangian model. Applied Thermal Engineering, 2016, 108, 368-377.	3.0	53
47	Numerical modeling of flow around and through a porous cylinder with diamond cross section. European Journal of Mechanics, B/Fluids, 2014, 46, 74-81.	1.2	51
48	Recovery of drop in heat transfer rate for a rotating system by nanofluids. Journal of Molecular Liquids, 2016, 220, 961-969.	2.3	51
49	Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. Journal of Molecular Liquids, 2016, 215, 276-284.	2.3	51
50	Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Advanced Powder Technology, 2016, 27, 312-322.	2.0	50
51	Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Applied Thermal Engineering, 2017, 124, 413-421.	3.0	48
52	Stress-jump and Continuity Interface Conditions for a Cylinder Embedded in a Porous Medium. Transport in Porous Media, 2015, 107, 171-186.	1.2	46
53	Combination of a solar collector and thermoelectric cooling modules in a humidification–dehumidification desalination system-experimental investigation with energy, exergy, exergoeconomic and environmental analysis. Energy Conversion and Management, 2020, 225, 113440.	4.4	46
54	Modelling Study on Internal Energy Loss Due to Entropy Generation for Non-Darcy Poiseuille Flow of Silver-Water Nanofluid: An Application of Purification. Entropy, 2018, 20, 851.	1.1	45

#	Article	IF	CITATIONS
55	Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chemical Engineering and Processing: Process Intensification, 2017, 117, 27-37.	1.8	44
56	Entropy generation analysis of different solar thermal systems. Environmental Science and Pollution Research, 2020, 27, 20699-20724.	2.7	43
57	Smart computing approach for design and scale-up of conical spouted beds with open-sided draft tubes. Particuology, 2021, 55, 179-190.	2.0	42
58	A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid. Thermal Science, 2014, 18, 1305-1314.	0.5	40
59	Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 385, 198-206.	1.0	39
60	The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. Journal of Magnetism and Magnetic Materials, 2015, 391, 5-11.	1.0	39
61	Numerical study on convective heat transfer of nanofluid in a minichannel heat sink with micro-encapsulated PCM-cooled ceiling. International Journal of Heat and Mass Transfer, 2020, 153, 119589.	2.5	38
62	Numerical study on forced convection of water-based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini-channel heat sink. International Journal of Heat and Mass Transfer, 2020, 157, 119965.	2.5	37
63	Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study. International Communications in Heat and Mass Transfer, 2020, 112, 104477.	2.9	37
64	A review on potentials of coupling PCM storage modules to heat pipes and heat pumps. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1655-1713.	2.0	36
65	Mixing process and mass transfer in a novel design of induced-charge electrokinetic micromixer with a conductive mixing-chamber. International Communications in Heat and Mass Transfer, 2019, 108, 104293.	2.9	35
66	Control of Wake Structure Behind a Square Cylinder by Magnetohydrodynamics. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	0.8	33
67	Optimum Interaction Between Magnetohydrodynamics and Nanofluid for Thermal and Drag Management. Journal of Thermophysics and Heat Transfer, 2017, 31, 218-229.	0.9	33
68	Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Thermal Science and Engineering Progress, 2018, 6, 186-193.	1.3	33
69	The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020, 139, 411-426.	2.0	33
70	Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. Journal of Thermal Analysis and Calorimetry, 2021, 143, 4183-4195.	2.0	33
71	Numerical study of flow around and through a porous diamond cylinder in different apex angles. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 1504-1518.	1.6	32
72	Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners. Applied Thermal Engineering, 2016, 107, 533-543.	3.0	32

#	Article	IF	CITATIONS
73	A two-way couple of Eulerian-Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technology, 2017, 312, 260-269.	2.1	31
74	Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Applied Thermal Engineering, 2017, 110, 1448-1461.	3.0	31
75	Experimental study on thermophysical properties of water-based nanoemulsion of n-eicosane PCM. Journal of Molecular Liquids, 2021, 321, 114760.	2.3	29
76	Sensitivity Analysis for Entropy Generation in Porous Solar Heat Exchangers by RSM. Journal of Thermophysics and Heat Transfer, 2017, 31, 390-402.	0.9	27
77	Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	1.2	27
78	On thermal management of pouch type lithium-ion batteries by novel designs of wavy minichannel cold plates: Comparison of co-flow with counter-flow. Journal of Energy Storage, 2022, 52, 104819.	3.9	26
79	Abilities of porous materials for energy saving in advanced thermal systems. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2437-2452.	2.0	25
80	Experimental study on cooling performance of nanofluid flow in a horizontal circular tube. International Journal of Heat and Mass Transfer, 2021, 169, 120961.	2.5	24
81	Spatial entropy generation analysis for the design improvement of a single slope solar still. Environmental Progress and Sustainable Energy, 2018, 37, 1112-1120.	1.3	23
82	Simulating phase change during the droplet deformation and impact on a wet surface in a square microchannel: An application of oil drops collision. European Physical Journal Plus, 2018, 133, 1.	1.2	23
83	Assessment of solar chimney combined with phase change materials. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 341-350.	2.7	23
84	Effect of flap installation on improving the homogeneity of the mixture in an induced-charge electrokinetic micro-mixer. Chemical Engineering and Processing: Process Intensification, 2017, 121, 188-197.	1.8	22
85	Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1045-1055.	2.0	22
86	Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1883-1895.	2.0	21
87	A comprehensive geometrical study on an induced-charge electrokinetic micromixer equipped with electrically conductive plates. International Journal of Heat and Mass Transfer, 2020, 146, 118892.	2.5	21
88	Study on heat and mass transfer of a planar membrane humidifier for PEM fuel cell. International Journal of Heat and Mass Transfer, 2020, 152, 119538.	2.5	21
89	Thermal efficiency of flat plate thermosyphon solar water heater with nanofluids. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 276-287.	2.7	21
90	Effects of Rib Shapes on the Entropy Generation in a Ribbed Duct. Journal of Thermophysics and Heat Transfer, 2018, 32, 691-701.	0.9	20

#	Article	IF	CITATIONS
91	Effect of Transverse Twisted Baffles on Performance and Irreversibilities in a Duct. Journal of Thermophysics and Heat Transfer, 2019, 33, 49-62.	0.9	20
92	Water-based nano-PCM emulsion flow and heat transfer in divergent mini-channel heat sink—An experimental investigation. International Journal of Heat and Mass Transfer, 2020, 148, 119086.	2.5	19
93	Numerical study on heat and mass transfer performance of the planar membrane-based humidifier for PEMFC. International Journal of Heat and Mass Transfer, 2020, 157, 119918.	2.5	19
94	Volume-of-Fluid Model for Simulating Vapor–Liquid Phase Change in a Solar Still. Journal of Thermophysics and Heat Transfer, 2018, 32, 917-924.	0.9	18
95	A new design of induced-charge electrokinetic micromixer with corrugated walls and conductive plate installation. International Communications in Heat and Mass Transfer, 2020, 114, 104564.	2.9	18
96	Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. Journal of Magnetism and Magnetic Materials, 2016, 401, 1078-1087.	1.0	17
97	Performance analysis for single slope solar still enhanced with multi-shaped floating porous absorber. Sustainable Energy Technologies and Assessments, 2022, 50, 101854.	1.7	17
98	A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector. Environmental Science and Pollution Research, 2022, 29, 42616-42646.	2.7	17
99	Simulation of conjugate radiation–forced convection heat transfer in a porous medium using the lattice Boltzmann method. Meccanica, 2019, 54, 505-524.	1.2	16
100	Potential of gear-ring turbulator in three-dimensional heat exchanger tube from second law of thermodynamic viewpoint. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1526-1543.	1.6	15
101	Condensation in the presence of non-condensable gases in a convergent 3D channel. International Journal of Heat and Mass Transfer, 2020, 152, 119511.	2.5	15
102	Application of magnetohydrodynamics for suppressing the fluctuations in the unsteady flow around two side-by-side circular obstacles. European Physical Journal Plus, 2016, 131, 1.	1.2	14
103	Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. European Physical Journal Plus, 2016, 131, 1.	1.2	13
104	Geometric parameters and response surface methodology on cooling performance of vortex tubes. International Journal of Sustainable Energy, 2017, 36, 872-886.	1.3	13
105	Fundamental and subphenomena of boiling heat transfer. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1815-1832.	2.0	13
106	Capacity and strategies of energy production from renewable sources in Arab countries until 2030: a review from renewable energy potentials to environmental issues. Environmental Science and Pollution Research, 2022, 29, 47837-47866.	2.7	13
107	Condensation process and phase-change in the presence of obstacles inside a minichannel. Meccanica, 2017, 52, 2265-2274.	1.2	12
108	Simulation of liquid reaction and droplet formation on a moving micro-object by lattice Boltzmann method. Meccanica, 2018, 53, 803-815.	1.2	12

#	Article	IF	CITATIONS
109	Targeting a channel coating by using magnetic field and magnetic nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 137, 381-388.	2.0	12
110	Effects of flexibility of conductive plate on efficiency of an induced-charge electrokinetic micro-mixer under constant and time-varying electric fields-A comprehensive parametric study. Chemical Engineering Science, 2020, 212, 115335.	1.9	12
111	Effects of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe. Journal of Thermal Analysis and Calorimetry, 2020, 141, 2047-2059.	2.0	12
112	Effects of grains shapes of porous media on combustion onset—A numerical simulation using Lattice Boltzmann method. Computers and Mathematics With Applications, 2021, 81, 547-561.	1.4	12
113	Experimental study on cooling performance of water-based hybrid nanofluid with PCM and graphene nanoparticles. Case Studies in Thermal Engineering, 2022, 33, 101939.	2.8	12
114	Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1416-1432.	1.6	11
115	Heat transfer in an eight-pass oscillating loop heat pipe equipped with cooling tower. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1869-1877.	2.0	11
116	Potentials of boiling heat transfer in advanced thermal energy systems. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1833-1854.	2.0	11
117	On the forced convective flow inside thermal collectors enhanced by porous media: from macro to micro-channels. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2462-2483.	1.6	11
118	Potentials of magnetic shape memory alloys for energy harvesting. Journal of Magnetism and Magnetic Materials, 2021, 537, 168112.	1.0	11
119	A lattice Boltzmann method to simulate combined radiation–force convection heat transfer mode. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3695-3706.	0.8	10
120	Removal of the liquid from a micro-object and controlling the surface wettability by using a rotating shell - Numerical simulation by Lattice–Boltzmann method. Journal of Molecular Liquids, 2018, 272, 645-655.	2.3	10
121	An investigation on the thermal energy storage in an enclosure packed with micro-encapsulated phase change material. Case Studies in Thermal Engineering, 2021, 25, 100987.	2.8	10
122	Potentials of porous materials for temperature control of lithium-ion batteries. Journal of Energy Storage, 2022, 51, 104457.	3.9	10
123	Effect of fluid-porous interface conditions on steady flow around and through a porous circular cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1658-1681.	1.6	9
124	Passive techniques to enhance heat transfer in various thermal systems. Journal of Thermal Analysis and Calorimetry, 2020, 140, 875-878.	2.0	9
125	Effects of convergence and superhydrophobicity on the hydrothermal features of the tapered double-layer microchannel. International Journal of Thermal Sciences, 2022, 181, 107745.	2.6	9
126	Analytical approximation of heat and mass transfer in MHD non-Newtonian nanofluid flow over a stretching sheet with convective surface boundary conditions. International Journal of Biomathematics, 2017, 10, 1750008.	1.5	8

#	Article	IF	CITATIONS
127	Classifications of Porous Materials for Energy Applications. , 2022, , 774-785.		8
128	Modeling of soiling losses in solar energy systems. Sustainable Energy Technologies and Assessments, 2022, 53, 102435.	1.7	8
129	Appropriate position of porous insert in a heat exchanger by thermohydraulic analysis. Heat Transfer - Asian Research, 2017, 46, 1363-1379.	2.8	7
130	Evaluation of different numerical models for prediction of pressure drop in laminar nanofluid flows. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-19.	1.2	7
131	Analytical Nusselt number for forced convection inside a porous-filled tube with temperature-dependent thermal conductivity arising from high-temperature applications. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1943-1950.	2.0	7
132	Cooling characteristics and entropy production of nanofluid flowing through tube. AEJ - Alexandria Engineering Journal, 2022, 61, 427-441.	3.4	7
133	Efficacy of turbulent convective heat transfer in a circular tube with water-based nanoemulsion of n–Eicosane–An experimental study. International Journal of Heat and Mass Transfer, 2022, 183, 122062.	2.5	7
134	Flow and Heat Management Around Obstacle by Nanofluid and Incidence Angle. Journal of Thermophysics and Heat Transfer, 2017, 31, 983-988.	0.9	6
135	Progress and challenges of helical-shaped geothermal heat exchangers. Environmental Science and Pollution Research, 2021, 28, 28965-28992.	2.7	6
136	A Comparative Study on the Effects of Channel Divergence and Convergence on the Performance of Two-Layer Microchannels. Experimental Techniques, 2023, 47, 109-122.	0.9	5
137	Heat transfer and entropy generation of hybrid nanofluid inside the convergent doubleâ€layer tapered microchannel. Mathematical Methods in the Applied Sciences, 0, , .	1.2	5
138	An entropy production analysis for electroosmotic flow and convective heat transfer: a numerical investigation. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1877-1889.	2.0	4
139	Effects of nano-dust particles on heat transfer from multiple jets impinging on a flat plate. Journal of Thermal Analysis and Calorimetry, 2022, 147, 9853-9864.	2.0	4
140	New Design of Ranque–Hilsch Vortex Tube: Helical Multi-Intake Vortex Generator. Journal of Thermophysics and Heat Transfer, 2016, 30, 608-613.	0.9	3
141	Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method. European Physical Journal Plus, 2018, 133, 1.	1.2	3
142	Applications of nanofluids in thermal energy transport. , 2021, , 345-368.		3
143	An advanced turbulator with blades and semi-conical section for heat transfer improvement in a helical double tube heat exchanger. Journal of Central South University, 2021, 28, 3491-3506.	1.2	3
144	Evaporative heat transfer of R410A flow in an annular duct under oscillatory wall heat flux. International Journal of Heat and Mass Transfer, 2022, 191, 122841.	2.5	3

#	Article	IF	CITATIONS
145	Heat transfer intensification in microchannel by induced-charge electrokinetic phenomenon: a numerical study. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1849-1861.	2.0	2
146	CONTROL OF WAKE AND VORTEX SHEDDING BEHIND SOLID CIRCULAR OBSTACLE BY MAGNETOHYDRODYNAMICS. Journal of Thermal Engineering, 2015, 1, .	0.8	2
147	Experimental study on performance measurement of planar vacuum membrane dehumidifier with serpentine flow channel designs. AEJ - Alexandria Engineering Journal, 2022, 61, 10701-10711.	3.4	2
148	Entropy production analysis for nanofluid flow through a channel with perforated transverse twisted-baffles. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-20.	1.2	1
149	Mixing Process and Flow Structure in Electrokinetic Micromixer with Rough Walls- A Study on Rough Geometry. Experimental Techniques, 0, , 1.	0.9	Ο
150	Two-phase modeling of low-Reynolds turbulent heat convection of Al ₂ O ₃ -water nanofluid in a 2-D helically corrugated channel. Chemical Engineering Communications, 0, , 1-21.	1.5	0