Donald B Defranco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062449/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging, 2022, 14, .	3.1	1
2	Impact of A Required, Longitudinal Scholarly Project in Medical School: A Content Analysis of Medical Students' Reflections. Medical Science Educator, 2021, 31, 1385-1392.	1.5	2
3	Ciclesonide activates glucocorticoid signaling in neonatal rat lung but does not trigger adverse effects in the cortex and cerebellum. Neurobiology of Disease, 2021, 156, 105422.	4.4	3
4	Pten-NOLC1 fusion promotes cancers involving MET and EGFR signalings. Oncogene, 2021, 40, 1064-1076.	5.9	9
5	Prenatal drug exposure and neurodevelopmental programming of glucocorticoid signalling. Journal of Neuroendocrinology, 2020, 32, e12786.	2.6	24
6	Tight junction protein claudinâ€1 is downregulated by TGFâ€Î²1 via MEK signaling in benign prostatic epithelial cells. Prostate, 2020, 80, 1203-1215.	2.3	11
7	Differential impact of paired patientâ€derived BPH and normal adjacent stromal cells on benign prostatic epithelial cell growth in 3D culture. Prostate, 2020, 80, 1177-1187.	2.3	8
8	Effects of dutasteride in a rat model of chemically induced prostatic inflammation—Potential role of estrogen receptor β. Prostate, 2020, 80, 1413-1420.	2.3	1
9	Loss of CREBRF Reduces Anxiety-like Behaviors and Circulating Glucocorticoids in Male and Female Mice. Endocrinology, 2020, 161, .	2.8	4
10	Transforming growth factor beta 1 impairs benign prostatic luminal epithelial cell monolayer barrier function. American Journal of Clinical and Experimental Urology, 2020, 8, 9-17.	0.4	4
11	Bladder overactivity and afferent hyperexcitability induced by prostateâ€toâ€bladder crossâ€sensitization in rats with prostatic inflammation. Journal of Physiology, 2019, 597, 2063-2078.	2.9	35
12	Eâ€cadherin is downregulated in benign prostatic hyperplasia and required for tight junction formation and permeability barrier in the prostatic epithelial cell monolayer. Prostate, 2019, 79, 1226-1237.	2.3	22
13	The role of prostaglandin and E series prostaglandin receptor type 4 receptors in the development of bladder overactivity in a rat model of chemically induced prostatic inflammation. BJU International, 2019, 124, 883-891.	2.5	5
14	Longâ€lasting bladder overactivity and bladder afferent hyperexcitability in rats with chemicallyâ€induced prostatic inflammation. Prostate, 2019, 79, 872-879.	2.3	8
15	A comparison of the sexually dimorphic dexamethasone transcriptome in mouse cerebral cortical and hypothalamic embryonic neural stem cells. Molecular and Cellular Endocrinology, 2018, 471, 42-50.	3.2	12
16	Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice. Endocrinology, 2018, 159, 46-64.	2.8	91
17	Statins impact primary embryonic mouse neural stem cell survival, cell death, and fate through distinct mechanisms. PLoS ONE, 2018, 13, e0196387.	2.5	13
18	The Hypothalamic-Pituitary-Adrenal Axis and the Fetus. Hormone Research in Paediatrics, 2018, 89, 380-387.	1.8	37

DONALD B DEFRANCO

#	Article	IF	CITATIONS
19	Chaperoning skin atrophy. Oncotarget, 2018, 9, 36407-36408.	1.8	1
20	Effects of Estrogen Receptor β Stimulation in a Rat Model of Nonâ€Bacterial Prostatic Inflammation. Prostate, 2017, 77, 803-811.	2.3	28
21	Research Resource: The Dexamethasone Transcriptome in Hypothalamic Embryonic Neural Stem Cells. Molecular Endocrinology, 2016, 30, 144-154.	3.7	17
22	Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 14747-14760.	3.4	8
23	Effects of antenatal glucocorticoids on the developing brain. Steroids, 2016, 114, 25-32.	1.8	78
24	Noncoding RNAs that associate with YB-1 alter proliferation in prostate cancer cells. Rna, 2015, 21, 1159-1172.	3.5	20
25	Minireview: The Impact of Antenatal Therapeutic Synthetic Glucocorticoids on the Developing Fetal Brain. Molecular Endocrinology, 2015, 29, 658-666.	3.7	23
26	Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget, 2015, 6, 16135-16150.	1.8	66
27	The Importance of Basic Science and Research Training for the Next Generation of Physicians and Physician Scientists. Molecular Endocrinology, 2014, 28, 1919-1921.	3.7	16
28	VDR Activity Is Differentially Affected by Hic-5 in Prostate Cancer and Stromal Cells. Molecular Cancer Research, 2014, 12, 1166-1180.	3.4	17
29	Caveolin-1 Regulates Genomic Action of the Glucocorticoid Receptor in Neural Stem Cells. Molecular and Cellular Biology, 2014, 34, 2611-2623.	2.3	30
30	Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Molecular and Cellular Endocrinology, 2014, 384, 185-199.	3.2	30
31	Upregulation of androgenâ€responsive genes and transforming growth factorâ€Î²1 cascade genes in a rat model of nonâ€bacterial prostatic inflammation. Prostate, 2014, 74, 337-345.	2.3	36
32	Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiology of Disease, 2014, 70, 252-261.	4.4	10
33	Reduced Glucocorticoid Receptor Protein Expression in Children with Critical Illness. Hormone Research in Paediatrics, 2013, 79, 169-178.	1.8	36
34	Editorial: Molecular Endocrinology Articles in the Spotlight for April 2013. Molecular Endocrinology, 2013, 27, 557-557.	3.7	0
35	Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Research, 2013, 1523, 10-27.	2.2	11
36	Cooperativity and complementarity: Synergies in non-classical and classical glucocorticoid signaling. Cell Cycle, 2012, 11, 2819-2827.	2.6	46

DONALD B DEFRANCO

#	Article	IF	CITATIONS
37	Altered transcription factor trafficking in oxidatively-stressed neuronal cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1773-1782.	3.8	15
38	A Local Paracrine and Endocrine Network Involving TGFβ, Cox-2, ROS, and Estrogen Receptor β Influences Reactive Stromal Cell Regulation of Prostate Cancer Cell Motility. Molecular Endocrinology, 2012, 26, 940-954.	3.7	26
39	Editorial: Molecular Endocrinology Articles in the Spotlight for March 2012. Molecular Endocrinology, 2012, 26, 359-359.	3.7	ο
40	Nongenomic glucocorticoid receptor action regulates gap junction intercellular communication and neural progenitor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16657-16662.	7.1	102
41	Paxillin and Hydrogen Peroxide-Inducible Clone 5 Expression and Distribution in Control and Alzheimer Disease Hippocampi. Journal of Neuropathology and Experimental Neurology, 2010, 69, 356-371.	1.7	20
42	Molecular Endocrinology: The Next Five Years. Molecular Endocrinology, 2009, 23, 1-1.	3.7	0
43	Coactivators and nuclear receptor transactivation. Journal of Cellular Biochemistry, 2008, 104, 1580-1586.	2.6	59
44	Effects of dexamethasone on neurogenesis in NT2 pluripotent human embryonal carcinoma cells. FASEB Journal, 2008, 22, 623-623.	0.5	0
45	Hic-5/ARA55 a prostate stroma-specific AR coactivator. Steroids, 2007, 72, 218-220.	1.8	22
46	Glucocorticoid receptor physiology. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 321-330.	5.7	188
47	Hic-5/ARA55, a LIM Domain–Containing Nuclear Receptor Coactivator Expressed in Prostate Stromal Cells. Cancer Research, 2006, 66, 7326-7333.	0.9	38
48	Alternative Effects of the Ubiquitin-Proteasome Pathway on Glucocorticoid Receptor Down-Regulation and Transactivation Are Mediated by CHIP, an E3 Ligase. Molecular Endocrinology, 2005, 19, 1474-1482.	3.7	66
49	Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cellular Signalling, 2004, 16, 857-872.	3.6	267
50	Small molecule activators of the heat shock response and neuroprotection from stroke. Current Atherosclerosis Reports, 2004, 6, 295-300.	4.8	13
51	Distinct LIM domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation. Journal of Cellular Biochemistry, 2004, 92, 810-819.	2.6	26
52	Glucocorticoid Receptors in Hippocampal Neurons that Do Not Engage Proteasomes Escape from Hormone-Dependent Down-Regulation but Maintain Transactivation Activity. Molecular Endocrinology, 2002, 16, 1987-1998.	3.7	37
53	Navigating Steroid Hormone Receptors through the Nuclear Compartment. Molecular Endocrinology, 2002, 16, 1449-1455.	3.7	92
54	Navigating Steroid Hormone Receptors through the Nuclear Compartment. Molecular Endocrinology, 2002, 16, 1449-1455.	3.7	33

DONALD B DEFRANCO

#	Article	IF	CITATIONS
55	Nuclear export: DNA-binding domains find a surprising partner. Current Biology, 2001, 11, R1036-R1037.	3.9	13
56	Hypothermia during Reperfusion after Asphyxial Cardiac Arrest Improves Functional Recovery and Selectively Alters Stress-Induced Protein Expression. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 520-530.	4.3	139
57	Protracted Nuclear Export of Glucocorticoid Receptor Limits Its Turnover and Does Not Require the Exportin 1/CRM1-Directed Nuclear Export Pathway. Molecular Endocrinology, 2000, 14, 40-51.	3.7	90
58	Interaction of the τ2 Transcriptional Activation Domain of Glucocorticoid Receptor with a Novel Steroid Receptor Coactivator, Hic-5, Which Localizes to Both Focal Adhesions and the Nuclear Matrix. Molecular Biology of the Cell, 2000, 11, 2007-2018.	2.1	122
59	Protracted Nuclear Export of Glucocorticoid Receptor Limits Its Turnover and Does Not Require the Exportin 1/CRM1-Directed Nuclear Export Pathway. Molecular Endocrinology, 2000, 14, 40-51.	3.7	38
60	Geldanamycin Provides Posttreatment Protection Against Glutamate-Induced Oxidative Toxicity in a Mouse Hippocampal Cell Line. Journal of Neurochemistry, 1999, 72, 95-101.	3.9	56
61	Regulation of steroid receptor subcellular trafficking. Cell Biochemistry and Biophysics, 1999, 30, 1-24.	1.8	42
62	Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genetics, 1998, 19, 148-154.	21.4	802
63	The DNA-Binding and τ2 Transactivation Domains of the Rat Glucocorticoid Receptor Constitute a Nuclear Matrix-Targeting Signal. Molecular Endocrinology, 1998, 12, 1420-1431.	3.7	58
64	v- <i>mos</i> Oncoproteins Affect the Nuclear Retention and Reutilization of Glucocorticoid Receptors. Molecular Endocrinology, 1989, 3, 1279-1288.	3.7	88