Roman Szabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062142/publications.pdf

Version: 2024-02-01

26 papers

2,104 citations

20 h-index 26 g-index

26 all docs

26 docs citations

times ranked

26

1581 citing authors

#	Article	IF	CITATIONS
1	Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002, 21, 3765-3779.	5.9	300
2	Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer and Metastasis Reviews, 2003, 22, 237-258.	5.9	256
3	Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. Journal of Cell Biology, 2003, 163, 901-910.	5.2	195
4	Evidence for a Matriptase-Prostasin Proteolytic Cascade Regulating Terminal Epidermal Differentiation. Journal of Biological Chemistry, 2006, 281, 32941-32945.	3.4	164
5	Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4200-4205.	7.1	150
6	Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway. American Journal of Pathology, 2009, 175, 1453-1463.	3.8	126
7	Membrane-Anchored Serine Proteases in Vertebrate Cell and Developmental Biology. Annual Review of Cell and Developmental Biology, 2011, 27, 213-235.	9.4	111
8	Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development (Cambridge), 2009, 136, 2653-2663.	2.5	106
9	Type II transmembrane serine proteases. Thrombosis and Haemostasis, 2003, 90, 185-193.	3.4	100
10	Potent Inhibition and Global Co-localization Implicate the Transmembrane Kunitz-type Serine Protease Inhibitor Hepatocyte Growth Factor Activator Inhibitor-2 in the Regulation of Epithelial Matriptase Activity. Journal of Biological Chemistry, 2008, 283, 29495-29504.	3.4	93
11	Autosomal Ichthyosis with Hypotrichosis Syndrome Displays Low Matriptase Proteolytic Activity and Is Phenocopied in ST14 Hypomorphic Mice. Journal of Biological Chemistry, 2007, 282, 36714-36723.	3.4	92
12	Reduced Prostasin (CAP1/PRSS8) Activity Eliminates HAI-1 and HAI-2 Deficiency–Associated Developmental Defects by Preventing Matriptase Activation. PLoS Genetics, 2012, 8, e1002937.	3.5	59
13	Loss of Matriptase Suppression Underlies Spint1 Mutation-Associated Ichthyosis and Postnatal Lethality. American Journal of Pathology, 2009, 174, 2015-2022.	3.8	54
14	Mouse DESC1 Is Located within a Cluster of Seven DESC1-like Genes and Encodes a Type II Transmembrane Serine Protease That Forms Serpin Inhibitory Complexes. Journal of Biological Chemistry, 2004, 279, 46981-46994.	3.4	44
15	Expression and Genetic Loss of Function Analysis of the HAT/DESC Cluster Proteases TMPRSS11A and HAT. PLoS ONE, 2011, 6, e23261.	2.5	41
16	The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity. Journal of Biological Chemistry, 2014, 289, 14740-14749.	3.4	32
17	Delineation of proteolytic and non-proteolytic functions of membrane-anchored serine protease Prss8/prostasin. Development (Cambridge), 2016, 143, 2818-28.	2.5	28
18	Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II. Thrombosis and Haemostasis, 2014, 112, 402-411.	3.4	27

#	Article	IF	CITATION
19	TMPRSS13 deficiency impairs stratum corneum formation and epidermal barrier acquisition. Biochemical Journal, 2014, 461, 487-495.	3.7	23
20	Matriptase drives early-onset intestinal failure in a mouse model of congenital tufting enteropathy. Development (Cambridge), 2019, 146, .	2.5	21
21	Membrane-anchored serine proteases as regulators of epithelial function. Biochemical Society Transactions, 2020, 48, 517-528.	3.4	20
22	Regulation of Feto-Maternal Barrier by Matriptase- and PAR-2-Mediated Signaling Is Required for Placental Morphogenesis and Mouse Embryonic Survival. PLoS Genetics, 2014, 10, e1004470.	3.5	19
23	Zymogenâ€locked mutant prostasin (Prss8) leads to incomplete proteolytic activation of the epithelial sodium channel (ENaC) and severely compromises triamterene tolerance in mice. Acta Physiologica, 2021, 232, e13640.	3.8	18
24	Loss of HAI-2 in mice with decreased prostasin activity leads to an early-onset intestinal failure resembling congenital tufting enteropathy. PLoS ONE, 2018, 13, e0194660.	2.5	13
25	Iterative, multiplexed CRISPR-mediated gene editing for functional analysis of complex protease gene clusters. Journal of Biological Chemistry, 2019, 294, 15987-15996.	3.4	8
26	EPCAM and TROP2 share a role in claudin stabilization and development of intestinal and extraintestinal epithelia in mice. Biology Open, 2022, 11, .	1.2	4