
Jason Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6061862/publications.pdf Version: 2024-02-01

LASON WOODS

#	Article	IF	CITATIONS
1	Humidity's impact on greenhouse gas emissions from air conditioning. Joule, 2022, 6, 726-741.	24.0	42
2	An analytical method for identifying synergies between behind-the-meter battery and thermal energy storage. Journal of Energy Storage, 2022, 50, 104216.	8.1	5
3	Reduced-order modeling method for phase-change thermal energy storage heat exchangers. Energy Conversion and Management, 2022, 263, 115692.	9.2	10
4	Addressing energy storage needs at lower cost <i>via</i> on-site thermal energy storage in buildings. Energy and Environmental Science, 2021, 14, 5315-5329.	30.8	46
5	Rate capability and Ragone plots for phase change thermal energy storage. Nature Energy, 2021, 6, 295-302.	39.5	101
6	Design and performance evaluation of a dual-circuit thermal energy storage module for air conditioners. Applied Energy, 2021, 292, 116843.	10.1	14
7	The energy saving potential of thermo-responsive desiccants for air dehumidification. Energy Conversion and Management, 2021, 244, 114520.	9.2	21
8	Impact of electric vehicle charging on the power demand of retail buildings. Advances in Applied Energy, 2021, 4, 100062.	13.2	58
9	Sensitivity of occupant comfort models to humidity and their effect on cooling energy use. Building and Environment, 2019, 162, 106240.	6.9	11
10	Regression-based approach to modeling emerging HVAC technologies in EnergyPlus: A case study using a Vuilleumier-cycle heat pump. Energy and Buildings, 2019, 186, 195-207.	6.7	17
11	Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes. Energy and Buildings, 2018, 165, 364-378.	6.7	27
12	Effective moisture penetration depth model for residential buildings: Sensitivity analysis and guidance on model inputs. Energy and Buildings, 2018, 165, 216-232.	6.7	17
13	On the importance of the heat and mass transfer resistances in internally-cooled liquid desiccant dehumidifiers and regenerators. International Journal of Heat and Mass Transfer, 2018, 122, 324-340.	4.8	30
14	Passive Cooling of Photovoltaics with Desiccants. , 2017, , .		3
15	Frequency Regulation Services from Connected Residential Devices. , 2016, , .		6
16	Field measurement of moisture-buffering model inputs for residential buildings. Energy and Buildings, 2016, 117, 91-98.	6.7	13
17	Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews, 2014, 33, 290-304.	16.4	174
18	Heat and mass transfer in liquid-to-liquid membrane contactors: Design approach and model applicability. International Journal of Heat and Mass Transfer, 2013, 59, 46-57.	4.8	10

JASON WOODS

#	Article	IF	CITATIONS
19	A desiccant-enhanced evaporative air conditioner: Numerical model and experiments. Energy Conversion and Management, 2013, 65, 208-220.	9.2	164
20	Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators. Applied Thermal Engineering, 2013, 50, 868-876.	6.0	32
21	Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage. Energy Procedia, 2012, 30, 55-64.	1.8	19
22	Design and experimental characterization of a membrane-based absorption heat pump. Journal of Membrane Science, 2011, 378, 85-94.	8.2	35
23	Ceneralized guidance for considering pore-size distribution in membrane distillation. Journal of Membrane Science, 2011, 368, 124-133.	8.2	44
24	Modeling of a membrane-based absorption heat pump. Journal of Membrane Science, 2009, 337, 113-124.	8.2	33