Andrey S Marchev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6061580/publications.pdf

Version: 2024-02-01

516710 434195 35 990 16 31 citations g-index h-index papers 36 36 36 1354 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPAR \hat{I}^3 in human adipocytes. Biomedicine and Pharmacotherapy, 2022, 149, 112908.	5.6	15
2	Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils. International Journal of Molecular Sciences, 2021, 22, 1759.	4.1	10
3	Rosmarinic acid - From bench to valuable applications in food industry. Trends in Food Science and Technology, 2021, 117, 182-193.	15.1	72
4	Biotechnologically Produced Lavandula angustifolia Mill. Extract Rich in Rosmarinic Acid Resolves Psoriasis-Related Inflammation Through Janus Kinase/Signal Transducer and Activator of Transcription Signaling. Frontiers in Pharmacology, 2021, 12, 680168.	3.5	11
5	Usnic Acid Treatment Changes the Composition of Mycobacterium tuberculosis Cell Envelope and Alters Bacterial Redox Status. MSystems, $2021, 6, .$	3.8	7
6	Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cellular and Molecular Life Sciences, 2021, 78, 6487-6503.	5.4	33
7	Anti-Adipogenic Effect of Alchemilla monticola is Mediated Via PI3K/AKT Signaling Inhibition in Human Adipocytes. Frontiers in Pharmacology, 2021, 12, 707507.	3.5	13
8	Tanshinones from Salvia miltiorrhiza inhibit Mycobacterium tuberculosis via disruption of the cell envelope surface and oxidative stress. Food and Chemical Toxicology, 2021, 156, 112405.	3.6	1
9	Veronica austriaca L. Extract and Arbutin Expand Mature Double TNF-α/IFN-γ Neutrophils in Murine Bone Marrow Pool. Molecules, 2020, 25, 3410.	3.8	2
10	Green (cell) factories for advanced production of plant secondary metabolites. Critical Reviews in Biotechnology, 2020, 40, 443-458.	9.0	101
11	Nepeta nuda ssp. nuda L. water extract: Inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. Journal of Herbal Medicine, 2020, 21, 100334.	2.0	10
12	Plant In Vitro Systems as a Sustainable Source of Active Ingredients for Cosmeceutical Application. Molecules, 2020, 25, 2006.	3.8	16
13	Authenticity and quality evaluation of different <i>Rhodiola</i> species and commercial products based on NMRâ€spectroscopy and HPLC. Phytochemical Analysis, 2020, 31, 756-769.	2.4	18
14	Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils. Food and Chemical Toxicology, 2019, 124, 1-9.	3.6	11
15	Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food and Chemical Toxicology, 2018, 121, 604-611.	3.6	28
16	Causes and solutions to "globesity― The new fa(s)t alarming global epidemic. Food and Chemical Toxicology, 2018, 121, 173-193.	3.6	48
17	Transformed Root Culture: From Genetic Transformation to NMR-Based Metabolomics. Methods in Molecular Biology, 2018, 1815, 457-474.	0.9	O
18	Phytochemical variations of Rhodiola rosea L. wild-grown in Bulgaria. Phytochemistry Letters, 2017, 20, 386-390.	1.2	26

#	Article	IF	Citations
19	Altered expression of TRAIL on mouse T cells via ERK phosphorylation by Rhodiola rosea L. and its marker compounds. Food and Chemical Toxicology, 2017, 108, 419-428.	3.6	25
20	Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime?. Annals of the New York Academy of Sciences, 2017, 1401, 114-135.	3.8	166
21	Tailoring tobacco hairy root metabolism for the production of stilbenes. Scientific Reports, 2017, 7, 17976.	3.3	16
22	Genetic transformation of rare Verbascum eriophorum Godr. plants and metabolic alterations revealed by NMR-based metabolomics. Biotechnology Letters, 2016, 38, 1621-1629.	2.2	13
23	Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance. Journal of Ethnopharmacology, 2016, 193, 586-591.	4.1	24
24	Rhodiola rosea L.: from golden root to green cell factories. Phytochemistry Reviews, 2016, 15, 515-536.	6.5	35
25	Protopine Production by Fumaria Cell Suspension Cultures: Effect of Light. Applied Biochemistry and Biotechnology, 2015, 176, 287-300.	2.9	15
26	Metabolic alterations of Verbascum nigrum L. plants and SAArT transformed roots as revealed by NMR-based metabolomics. Plant Cell, Tissue and Organ Culture, 2015, 123, 349-356.	2.3	34
27	Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnology Letters, 2014, 36, 211-221.	2.2	40
28	Bioprocessing of differentiated plant in vitro systems. Engineering in Life Sciences, 2013, 13, 26-38.	3.6	112
29	Plant In Vitro Systems as Sources of Tropane Alkaloids. , 2013, , 173-211.		8
30	Chemical Compositions of Essential Oils from Leaves and Flowers of <i>Salvia ringens </i> Sibth. et Sm. Growing Wild in Bulgaria. Journal of Essential Oil-bearing Plants: JEOP, 2013, 16, 624-629.	1.9	7
31	Chemical Composition of Essential Oil ofSalvia scabiosifoliaLam. from Bulgaria. Journal of Essential Oil-bearing Plants: JEOP, 2012, 15, 908-914.	1.9	3
32	Triterpenes Production by Rhizogenic Callus of <i> Salvia Scabiosifolia < /i > Lam. Obtained via <i> Agrobacterium Rhizogenes < /i > Mediated Genetic Transformation. Biotechnology and Biotechnological Equipment, 2011, 25, 30-33.</i></i>	1.3	10
33	Production of Oleanolic and Ursolic Acids by Callus Cultures ofSalvia TomentosaMill Biotechnology and Biotechnological Equipment, 2011, 25, 34-38.	1.3	17
34	Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.). Biotechnology Letters, 2011, 33, 1873-1878.	2.2	36
35	Nutrient medium optimization for hyoscyamine production in diploid and tetraploid Datura stramonium L. hairy root cultures. World Journal of Microbiology and Biotechnology, 2009, 25, 2239-2245.	3.6	7