Haifang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6061348/publications.pdf Version: 2024-02-01

HALFANC WANC

#	Article	IF	CITATIONS
1	Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 2006, 128, 7756-7757.	13.7	4,049
2	Carbon Dots for Multiphoton Bioimaging. Journal of the American Chemical Society, 2007, 129, 11318-11319.	13.7	1,968
3	Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society, 2009, 131, 11308-11309.	13.7	1,341
4	Cytotoxicity of Carbon Nanomaterials:Â Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology, 2005, 39, 1378-1383.	10.0	1,307
5	In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 2011, 200, 201-210.	0.8	1,149
6	Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. Journal of Physical Chemistry C, 2009, 113, 18110-18114.	3.1	829
7	Carbon "quantum―dots for optical bioimaging. Journal of Materials Chemistry B, 2013, 1, 2116.	5.8	708
8	Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 2011, 359, 24-29.	9.4	602
9	Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 2010, 351, 122-127.	9.4	517
10	Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181, 182-189.	0.8	409
11	Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria. ACS Applied Materials & Interfaces, 2014, 6, 2791-2798.	8.0	377
12	Biodistribution of Carbon Single-Wall Carbon Nanotubes in Mice. Journal of Nanoscience and Nanotechnology, 2004, 4, 1019-1024.	0.9	355
13	Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 2008, 10, 263-276.	1.9	338
14	Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45, 1419-1424.	10.3	251
15	Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivoâ€. Journal of Physical Chemistry C, 2007, 111, 17761-17764.	3.1	225
16	Characterization and Preliminary Toxicity Assay of Nanoâ€Titanium Dioxide Additive in Sugarâ€Coated Chewing Gum. Small, 2013, 9, 1765-1774.	10.0	209
17	Biocompatible, Antifouling, and Thermosensitive Coreâ~'Shell Nanogels Synthesized by RAFT Aqueous Dispersion Polymerization. Macromolecules, 2011, 44, 2524-2530.	4.8	203
18	Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine, 2012, 7, 1801-1812.	3.3	184

#	Article	IF	CITATIONS
19	Susceptibility of Young and Adult Rats to the Oral Toxicity of Titanium Dioxide Nanoparticles. Small, 2013, 9, 1742-1752.	10.0	183
20	Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. Journal of Environmental Chemical Engineering, 2013, 1, 1044-1050.	6.7	179
21	Biodistribution and fate of nanodiamonds in vivo. Diamond and Related Materials, 2009, 18, 95-100.	3.9	168
22	Covalently PEGylated Carbon Nanotubes with Stealth Character In Vivo. Small, 2008, 4, 940-944.	10.0	153
23	Pharmacokinetics, Metabolism and Toxicity of Carbon Nanotubes for Biomedical Purposes. Theranostics, 2012, 2, 271-282.	10.0	147
24	Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond and Related Materials, 2010, 19, 291-299.	3.9	138
25	Unique Aggregation of Anthrax (Bacillusanthracis) Spores by Sugar-Coated Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 13364-13365.	13.7	112
26	Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale, 2013, 5, 6088.	5.6	104
27	Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4910-4920.	8.0	104
28	Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 2009, 11, 41-53.	1.9	101
29	Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicology Letters, 2014, 226, 150-162.	0.8	100
30	Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicology in Vitro, 2012, 26, 799-806.	2.4	92
31	Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicology Letters, 2015, 239, 123-130.	0.8	91
32	Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Nanomedicine, 2013, 8, 2007-2025.	3.3	85
33	Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicology Letters, 2013, 219, 42-48.	0.8	83
34	Fullerene-Conjugated Doxorubicin in Cells. ACS Applied Materials & amp; Interfaces, 2010, 2, 1384-1389.	8.0	81
35	Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. Nanoscale, 2013, 5, 11166.	5.6	81
36	Biodistribution and tumor uptake of C60(OH) x in mice. Journal of Nanoparticle Research, 2006, 8, 53-63.	1.9	78

#	Article	IF	CITATIONS
37	Fluorescent Carbon Dots and Nanodiamonds for Biological Imaging: Preparation, Application, Pharmacokinetics and Toxicity. Current Drug Metabolism, 2012, 13, 1046-1056.	1.2	75
38	Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. Journal of Environmental Chemical Engineering, 2014, 2, 907-913.	6.7	74
39	Single-Walled Carbon Nanotube as a Unique Scaffold for the Multivalent Display of Sugars. Biomacromolecules, 2008, 9, 2408-2418.	5.4	71
40	Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells. Journal of Applied Toxicology, 2014, 34, 424-435.	2.8	70
41	A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology, 2008, 19, 075101.	2.6	69
42	Self-Assembled Graphene–Dextran Nanohybrid for Killing Drug-Resistant Cancer Cells. ACS Applied Materials & Interfaces, 2013, 5, 7181-7189.	8.0	68
43	Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of Near-Infrared Quantum Dots Ag ₂ Se in Mice. ACS Applied Materials & Interfaces, 2016, 8, 17859-17869.	8.0	68
44	Lanthanide (Gd3+ and Yb3+) functionalized gold nanoparticles for inÂvivo imaging and therapy. Biomaterials, 2016, 108, 35-43.	11.4	67
45	Cytotoxicity of Zinc Oxide Nanoparticles: Importance of Microenvironment. Journal of Nanoscience and Nanotechnology, 2010, 10, 8638-8645.	0.9	65
46	Biological effect of food additive titanium dioxide nanoparticles on intestine: an <i>in vitro</i> study. Journal of Applied Toxicology, 2015, 35, 1169-1178.	2.8	65
47	Nanotechnology tackles tumours. Nature Nanotechnology, 2007, 2, 20-21.	31.5	64
48	In situ crystal growth of gold nanocrystals on upconversion nanoparticles for synergistic chemo-photothermal therapy. Nanoscale, 2017, 9, 12885-12896.	5.6	64
49	Quantification of Carbon Nanomaterials <i>in Vivo</i> . Accounts of Chemical Research, 2013, 46, 750-760.	15.6	63
50	Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale, 2011, 3, 1974.	5.6	62
51	Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2012, 97, 62-69.	5.0	61
52	Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology, 2008, 19, 395101.	2.6	60
53	A Facile Method To Encapsulate Proteins in Silica Nanoparticles: Encapsulated Green Fluorescent Protein as a Robust Fluorescence Probe. Angewandte Chemie - International Edition, 2010, 49, 3022-3025.	13.8	60
54	Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement. Nature Communications, 2021, 12, 4367.	12.8	51

#	Article	IF	CITATIONS
55	Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environmental Science: Nano, 2016, 3, 788-798.	4.3	50
56	Unexpected Size Effect: The Interplay between Different‧ized Nanoparticles in Their Cellular Uptake. Small, 2019, 15, e1901687.	10.0	49
57	Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1633-1642.	3.3	46
58	Inhibition of nicotine-DNA adduct formation in mice by six dietary constituents. Food and Chemical Toxicology, 2003, 41, 1045-1050.	3.6	45
59	Blockade of oral tolerance to ovalbumin in mice by silver nanoparticles. Nanomedicine, 2015, 10, 419-431.	3.3	45
60	Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicology Research, 2017, 6, 134-143.	2.1	45
61	Effects of soil acidity on the uptake of trace elements in soybean and tomato plants. Applied Radiation and Isotopes, 2000, 52, 803-811.	1.5	43
62	Selective Interactions of Sugar-Functionalized Single-Walled Carbon Nanotubes with Bacillus Spores. ACS Nano, 2009, 3, 3909-3916.	14.6	43
63	Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles. International Journal of Molecular Sciences, 2016, 17, 974.	4.1	43
64	Influences of the Size and Hydroxyl Number of Fullerenes/Fullerenols on Their Interactions with Proteins. Journal of Nanoscience and Nanotechnology, 2010, 10, 6298-6304.	0.9	42
65	Acute toxicity of zinc oxide nanoparticles to the rat olfactory system after intranasal instillation. Journal of Applied Toxicology, 2013, 33, 1079-1088.	2.8	42
66	Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448, 347-355.	9.4	42
67	Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology, 2008, 2, 28-32.	3.0	41
68	In situ synthesis of porous silicananoparticles for covalent immobilization of enzymes. Nanoscale, 2012, 4, 414-416.	5.6	41
69	Biodefunctionalization of Functionalized Single-Walled Carbon Nanotubes in Mice. Biomacromolecules, 2009, 10, 2009-2012.	5.4	40
70	Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Science Bulletin, 2014, 59, 3406-3412.	1.7	37
71	Biocompatibility of graphene oxide intravenously administrated in mice—effects of dose, size and exposure protocols. Toxicology Research, 2015, 4, 83-91.	2.1	37
72	Diameter-selective dispersion of double-walled carbon nanotubes by lysozyme. Nanoscale, 2011, 3, 970.	5.6	36

#	Article	IF	CITATIONS
73	The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles in vivo. Frontiers in Chemistry, 2019, 7, 218.	3.6	36
74	CYTOTOXICITY EVALUATIONS OF FLUORESCENT CARBON NANOPARTICLES. Nano LIFE, 2010, 01, 153-161.	0.9	35
75	Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicology Research, 2015, 4, 1498-1510.	2.1	35
76	Multi-walled carbon nanotubes do not impair immune functions of dendritic cells. Carbon, 2009, 47, 1752-1760.	10.3	33
77	Graphene Oxide/Chitosan Composite for Methylene Blue Adsorption. Nanoscience and Nanotechnology Letters, 2013, 5, 372-376.	0.4	33
78	Carbon Nanoparticles Trapped in Vivo—Similar to Carbon Nanotubes in Time-Dependent Biodistribution. ACS Applied Materials & Interfaces, 2014, 6, 14672-14678.	8.0	30
79	Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. Ecotoxicology and Environmental Safety, 2018, 164, 739-748.	6.0	30
80	Cytotoxicity of vanadium oxide nanoparticles and titanium dioxideâ€coated vanadium oxide nanoparticles to human lung cells. Journal of Applied Toxicology, 2020, 40, 567-577.	2.8	30
81	Single-Cell Isotope Dilution Analysis with LA–ICP–MS: A New Approach for Quantification of Nanoparticles in Single Cells. Analytical Chemistry, 2020, 92, 14339-14345.	6.5	30
82	Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents. Applied Radiation and Isotopes, 2003, 58, 291-298.	1.5	27
83	PEGylation of double-walled carbon nanotubes for increasing their solubility in water. Nano Research, 2010, 3, 103-109.	10.4	27
84	Toxicity of Nano Gamma Alumina to Neural Stem Cells. Journal of Nanoscience and Nanotechnology, 2011, 11, 7848-7856.	0.9	27
85	Intestinal injury alters tissue distribution and toxicity of ZnO nanoparticles in mice. Toxicology Letters, 2018, 295, 74-85.	0.8	27
86	Short-term and long-term toxicological effects of vanadium dioxide nanoparticles on A549 cells. Environmental Science: Nano, 2019, 6, 565-579.	4.3	27
87	XPS Study of Cï¼łł Covalent Bond on Single-walled Carbon Nanotubes (SWNTs). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 673-675.	4.9	27
88	Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E34-E43.	7.1	25
89	Comparative investigation of the optical spectroscopic and thermal effect in Nd ³⁺ -doped nanoparticles. Nanoscale, 2019, 11, 10220-10228.	5.6	25
90	Advances in Biodistribution Study and Tracing Methodology of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 8469-8481.	0.9	24

#	Article	IF	CITATIONS
91	Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere, 2011, 82, 621-626.	8.2	24
92	Biological behaviors and chemical fates of Ag2Se quantum dots in vivo: the effect of surface chemistry. Toxicology Research, 2017, 6, 693-704.	2.1	24
93	Binding of nitrobenzene to hepatic DNA and hemoglobin at low doses in mice. Toxicology Letters, 2003, 139, 25-32.	0.8	23
94	Electric Potential Induced Dissociation of Hybridized DNA with Hairpin Motif Immobilized on Silicon Surface. Langmuir, 2006, 22, 6280-6285.	3.5	22
95	Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. Environmental Toxicology, 2007, 22, 630-635.	4.0	22
96	Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. Journal of Colloid and Interface Science, 2020, 571, 174-184.	9.4	22
97	Bioavailability and preliminary toxicity evaluations of alumina nanoparticles in vivo after oral exposure. Toxicology Research, 2012, 1, 69-74.	2.1	19
98	Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following long-term exposure. Toxicology, 2021, 459, 152859.	4.2	19
99	Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112140.	5.0	19
100	Effects of carbon dots surface functionalities on cellular behaviors – Mechanistic exploration for opportunities in manipulating uptake and translocation. Colloids and Surfaces B: Biointerfaces, 2019, 181, 48-57.	5.0	17
101	Deciphering Nanoparticle Trafficking into Glioblastomas Uncovers an Augmented Antitumor Effect of Metronomic Chemotherapy. Advanced Materials, 2022, 34, e2106194.	21.0	17
102	Water-Soluble Taurine-Functionalized Multi-Walled Carbon Nanotubes Induce Less Damage to Mitochondria of RAW 264.7 Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 8008-8016.	0.9	14
103	An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging. Nanoscale, 2013, 5, 10345.	5.6	14
104	Biological effects of agglomerated multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2016, 142, 65-73.	5.0	14
105	Toxicity assessment and mechanistic investigation of engineered monoclinic VO ₂ nanoparticles. Nanoscale, 2018, 10, 9736-9746.	5.6	14
106	Bulk enrichment and separation of multi-walled carbon nanotubes by density gradient centrifugation. Carbon, 2009, 47, 1608-1610.	10.3	13
107	Systematic Toxicity Evaluations of High-Performance Carbon "Quantum―Dots. Journal of Nanoscience and Nanotechnology, 2019, 19, 2130-2137.	0.9	13
108	Interaction of multi-walled carbon nanotubes and zinc ions enhances cytotoxicity of zinc ions. Science China Chemistry, 2016, 59, 910-917.	8.2	12

#	Article	IF	CITATIONS
109	Comparing Toxicity of Alumina and Zinc Oxide Nanoparticles on the Human Intestinal Epithelium <i>In Vitro</i> Model. Journal of Nanoscience and Nanotechnology, 2017, 17, 2881-2891.	0.9	11
110	Characterization of the Specific Interactions between Nanoparticles and Proteins at Residue-Resolution by Alanine Scanning Mutagenesis. ACS Applied Materials & Interfaces, 2020, 12, 34514-34523.	8.0	11
111	Multitracer studies on the effects of model acid rain on the adsorption of trace elements on soils. Radiochimica Acta, 2001, 89, 101-108.	1.2	10
112	Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 5883-5891.	5.8	10
113	Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopamine Nanoparticles. ACS Biomaterials Science and Engineering, 2021, 7, 5497-5505.	5.2	10
114	Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions. Toxicology Research, 2019, 8, 908-917.	2.1	9
115	Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. Chinese Chemical Letters, 2022, 33, 3303-3314.	9.0	9
116	Model study of acid rain effect on adsorption of trace elements on soils using a multitracer. Journal of Radioanalytical and Nuclear Chemistry, 1998, 235, 295-300.	1.5	8
117	Biodistribution of multi-walled carbon nanotubes functionalized by hydroxyl terminated poly(ethylene glycol) in mice. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1181-1186.	1.5	8
118	Pressure-Controlled Encapsulation of Graphene Quantum Dots into Liposomes by the Reverse-Phase Evaporation Method. Langmuir, 2021, 37, 14096-14104.	3.5	8
119	Carbon Nanoparticles for Cationic Dye (Methylene Blue) Removal from Aqueous Solution. Nanoscience and Nanotechnology Letters, 2012, 4, 839-842.	0.4	7
120	Chitosan-coated red fluorescent protein nanoparticle as a potential dual-functional siRNA carrier. Nanomedicine, 2015, 10, 2005-2016.	3.3	7
121	In vivo fate of Ag2Te quantum dot and comparison with other NIR-II silver chalcogenide quantum dots. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	7
122	Effects of VO2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NanoImpact, 2021, 24, 100351.	4.5	7
123	A CORM loaded nanoplatform for single NIR light-activated bioimaging, gas therapy, and photothermal therapy <i>in vitro</i> . Journal of Materials Chemistry B, 2021, 9, 9213-9220.	5.8	7
124	Edible Amorphous Structural Color. Advanced Optical Materials, 2022, 10, .	7.3	7
125	Copper peroxide coated upconversion nanoparticle modified with glucose oxidase for H ₂ O ₂ self-supplying starvation-enhanced chemodynamic therapy <i>in vitro</i> . Dalton Transactions, 2022, 51, 11325-11334.	3.3	7
126	Folding of Flexible Protein Fragments and Design of Nanoparticle-Based Artificial Antibody Targeting Lysozyme. Journal of Physical Chemistry B, 2022, 126, 5045-5054.	2.6	7

#	Article	IF	CITATIONS
127	Phytotoxicity of VO2 nanoparticles with different sizes to pea seedlings. Ecotoxicology and Environmental Safety, 2022, 242, 113885.	6.0	7
128	High binding of formic acid to biomacromolecules in mice. Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 745-749.	1.4	6
129	Thermosensitive, biocompatible and antifouling nanogels prepared via aqueous raft dispersion polymerization for targeted drug delivery. Journal of Controlled Release, 2011, 152, e75-e76.	9.9	6
130	A Potential MDM2 Inhibitor Formed by Restoring the Native Conformation of the p53 αâ€Helical Peptide on Gold Nanoparticles. ChemMedChem, 2022, 17, .	3.2	6
131	Applications of 14C-AMS in biomedical sciences (Bio-14C-AMS). Science Bulletin, 2001, 46, 537-543.	1.7	4
132	A Facile Microwaving Method to Turn Titanium Oxide Into Highly Active Ti ³⁺ Self-Doped Structure. Journal of Nanoscience and Nanotechnology, 2016, 16, 9826-9831.	0.9	4
133	Spectroscopic studies on interaction of hemoglobin and serum albumin with nicotine. Science Bulletin, 2002, 47, 538.	1.7	3
134	A convenient synthesis of14C-labelled resveratrol. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 167-174.	1.0	3
135	Conformationally engineering flexible peptides on silver nanoparticles. IScience, 2022, 25, 104324.	4.1	3
136	Genotoxic effects of low-dose exposure to pirimicarb studied with accelerator mass spectrometry. Science Bulletin, 1997, 42, 1662-1664.	1.7	2
137	Incorporation and/or adduction of formic acid with DNA in vivo studied by HPLC–AMS. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1317-1320.	1.4	2
138	Photoluminescent Carbon Nanomaterials: Properties and Potential Applications. , 2009, , 128-153.		2
139	Accelerator mass spectrometry (AMS) of the inhibitory effect of six dietary constituents on nicotine-hemoglobin adduction in mice. Journal of Radioanalytical and Nuclear Chemistry, 2005, 264, 665-669.	1.5	1
140	The joint antibacterial effect of silver nanoparticles and antibiotics. Toxicology Letters, 2015, 238, S211.	0.8	1
141	Silica nanoparticle with a single His-tag for addressable functionalization, reversible assembly, and recycling. Nano Research, 2018, 11, 2512-2522.	10.4	1
142	Radioisotopic tracing of lanthanide uptake in erythrocyte, using ytterbium (169Yb3+) and mouse erythrocytes. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261, 145-149.	1.5	0
143	Degradation of Upconverting Nanoparticles in Simulated Fluids Evaluated by Ratiometric Luminescence. New Journal of Chemistry, 0, , .	2.8	0