Céline Frochot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060991/publications.pdf

Version: 2024-02-01

76 4,486 34
papers citations h-index

79 79 79 6266
all docs docs citations times ranked citing authors

66

g-index

#	Article	IF	CITATIONS
1	Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008, 26, 612-621.	9.3	692
2	Nanoparticles for Radiation Therapy Enhancement: the Key Parameters. Theranostics, 2015, 5, 1030-1044.	10.0	289
3	Silica-based nanoparticles for photodynamic therapy applications. Nanoscale, 2010, 2, 1083.	5.6	251
4	Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chemical Communications, 2009, , 1475.	4.1	219
5	Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorganic and Medicinal Chemistry, 2005, 13, 2799-2808.	3.0	188
6	Phthalocyanines Covalently Bound to Biomolecules for a Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2007, 14, 1673-1687.	2.4	156
7	A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. Journal of Controlled Release, 2006, $111, 153-164$.	9.9	135
8	Twoâ∈Photon Excitation of Porphyrinâ∈Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy. Advanced Materials, 2014, 26, 7643-7648.	21.0	131
9	X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins. Journal of Physical Chemistry C, 2013, 117, 21583-21589.	3.1	117
10	Stability of folic acid under several parameters. European Journal of Pharmaceutical Sciences, 2016, 93, 419-430.	4.0	117
11	Fighting Hypoxia to Improve PDT. Pharmaceuticals, 2019, 12, 163.	3.8	113
12	Improvement of <i>meta </i> -tetra (Hydroxyphenyl) chlorin-Like Photosensitizer Selectivity with Folate-Based Targeted Delivery. Synthesis and in Vivo Delivery Studies. Journal of Medicinal Chemistry, 2008, 51, 3867-3877.	6.4	112
13	Triazinyl Porphyrin-Based Photoactive Cotton Fabrics: Preparation, Characterization, and Antibacterial Activity. Biomacromolecules, 2011, 12, 1716-1723.	5.4	111
14	The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnology, 2017, 8, 6.	3.7	93
15	Using X-rays in photodynamic therapy: an overview. Photochemical and Photobiological Sciences, 2018, 17, 1612-1650.	2.9	92
16	Multifunctional Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI. Theranostics, 2012, 2, 889-904.	10.0	75
17	Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity. Bioorganic Chemistry, 2007, 35, 205-220.	4.1	74
18	Non Polymeric Nanoparticles for Photodynamic Therapy Applications: Recent Developments. Current Medicinal Chemistry, 2012, 19, 781-792.	2.4	69

#	Article	IF	Citations
19	Enhanced Photobactericidal and Targeting Properties of a Cationic Porphyrin following the Attachment of Polymyxin B. Bioconjugate Chemistry, 2017, 28, 2493-2506.	3.6	67
20	Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus) Tj ETQq0 () 0 rgBT /C	verlock 10 Tf
21	Quantum dot–folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochemical and Photobiological Sciences, 2011, 10, 842.	2.9	55
22	Modulation of Photosensitization Processes for an Improved Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2010, 17, 3925-3943.	2.4	54
23	Update of the situation of clinical photodynamic therapy in Europe in the 2003–2018 period. Journal of Porphyrins and Phthalocyanines, 2019, 23, 347-357.	0.8	54
24	Recent Improvements in the Use of Synthetic Peptides for a Selective Photodynamic Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 469-488.	1.7	52
25	Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 657-670.	3.3	52
26	Inorganic Nanoparticles for Photodynamic Therapy. Topics in Current Chemistry, 2016, 370, 113-134.	4.0	51
27	Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: Synthesis and photophysical properties. Bioorganic and Medicinal Chemistry, 2017, 25, 1-10.	3.0	49
28	Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules, 2018, 23, 1936.	3.8	42
29	Photophysical Properties of Protoporphyrin IX, Pyropheophorbide-a, and Photofrin® in Different Conditions. Pharmaceuticals, 2021, 14, 138.	3.8	41
30	Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochemical and Photobiological Sciences, 2008, 7, 433-441.	2.9	39
31	Assessment of the specificity of a new folate-targeted photosensitizer for peritoneal metastasis of epithelial ovarian cancer to enable intraperitoneal photodynamic therapy. A preclinical study. Photodiagnosis and Photodynamic Therapy, 2016, 13, 130-138.	2.6	39
32	Ultrasmall AGulX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. International Journal of Nanomedicine, 2017, Volume 12, 7075-7088.	6.7	39
33	Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochemical Pharmacology, 2010, 80, 226-235.	4.4	38
34	Metabolic Profile of a Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1: An in Vivo and in Vitro Study. Drug Metabolism and Disposition, 2007, 35, 806-813.	3.3	36
35	Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 101-108.	3.8	35
36	Neuropilin-1 Targeting Photosensitization-Induced Early Stages of Thrombosis via Tissue Factor Release. Pharmaceutical Research, 2010, 27, 468-479.	3. 5	35

#	Article	IF	Citations
37	Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2018, 22, 115-126.	2.6	35
38	Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 12-22.	3.8	34
39	Synthesis of unexplored aminophosphonic acid and evaluation as scale inhibitor for industrial water applications. Journal of Water Process Engineering, 2018, 22, 192-202.	5.6	31
40	Functionalized silica-based nanoparticles for photodynamic therapy. Nanomedicine, 2011, 6, 995-1009.	3.3	30
41	New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy. International Journal of Molecular Sciences, 2015, 16, 24059-24080.	4.1	29
42	Proton MR Spectroscopy and Diffusion MR Imaging Monitoring to Predict Tumor Response to Interstitial Photodynamic Therapy for Glioblastoma. Theranostics, 2017, 7, 436-451.	10.0	29
43	Synthesis and Anticancer Activity of Gold Porphyrin Linked to Malonate Diamine Platinum Complexes. Inorganic Chemistry, 2019, 58, 12395-12406.	4.0	27
44	New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. Journal of Clinical Medicine, 2019, 8, 2205.	2.4	27
45	The Interest of Folic Acid in Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2015, 22, 3185-3207.	2.4	26
46	Synthesis and photophysical properties of the photoactivatable cationic porphyrin 5-(4-N-dodecylpyridyl)-10,15,20-tri(4-N-methylpyridyl)-21H,23H-porphyrin tetraiodide for anti-malaria PDT. Photochemical and Photobiological Sciences, 2015, 14, 1290-1295.	2.9	22
47	Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application. Journal of Biomolecular Structure and Dynamics, 2017, 35, 26-45.	3.5	22
48	Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L.) Carotenoids. Foods, 2017, 6, 4.	4.3	22
49	An Efficient Photodynamic Therapy Treatment for Human Pancreatic Adenocarcinoma. Journal of Clinical Medicine, 2020, 9, 192.	2.4	22
50	Comparison of two procedures for the design of dye-sensitized nanoparticles targeting photocatalytic water purification under solar and visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 177-192.	3.9	21
51	Photodynamic Therapy Using a New Folate Receptor-Targeted Photosensitizer on Peritoneal Ovarian Cancer Cells Induces the Release of Extracellular Vesicles with Immunoactivating Properties. Journal of Clinical Medicine, 2020, 9, 1185.	2.4	21
52	<p>Multiscale Selectivity and in vivo Biodistribution of NRP-1-Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 8739-8758.	6.7	19
53	Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy. Molecules, 2021, 26, 1122.	3.8	19
54	Real-Time Monitoring of Photocytotoxicity in Nanoparticles-Based Photodynamic Therapy: A Model-Based Approach. PLoS ONE, 2012, 7, e48617.	2.5	19

#	Article	IF	CITATIONS
55	Peptide-conjugated nanoparticles for targeted photodynamic therapy. Nanophotonics, 2021, 10, 3089-3134.	6.0	14
56	Photodynamic Molecular Beacons Triggered by MMP-2 and MMP-9: Influence of the Distance Between Photosensitizer and Quencher onto Photophysical Properties and Enzymatic Activation. Current Medicinal Chemistry, 2012, 19, 5580-5594.	2.4	12
57	New photodynamic molecular beacons (PMB) as potential cancer-targeted agents in PDT. Bioorganic and Medicinal Chemistry, 2018, 26, 688-702.	3.0	11
58	Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?. Radiation, 2021, 1, 5-17.	1.4	11
59	Design of a Targeting and Oxygen-Independent Platform to Improve Photodynamic Therapy: A Proof of Concept. ACS Applied Bio Materials, 2021, 4, 1330-1339.	4.6	11
60	Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. Nanomaterials, 2020, 10, 1432.	4.1	9
61	Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coordination Chemistry Reviews, 2022, 470, 214702.	18.8	9
62	Nanoparticles for Photodynamic Therapy Applications. Fundamental Biomedical Technologies, 2011, , 511-565.	0.2	8
63	Microwave-assisted synthesis of zinc 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin and zinc 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 595-600.	0.8	7
64	A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or Xâ€ray Energy Transfer. Photochemistry and Photobiology, 2017, 93, 1439-1448.	2.5	7
65	Synthesis of mono-, di- and triporphyrin building blocks by click chemistry for photodynamic therapy application. Tetrahedron, 2017, 73, 532-541.	1.9	7
66	Inclusion complex vs. conjugation of hydrophobic photosensitizers with \hat{l}^2 -cyclodextrin: Improved disaggregation and photodynamic therapy efficacy against glioblastoma cells. Materials Science and Engineering C, 2020, 109, 110604.	7.3	7
67	Study of Cytotoxic and Photodynamic Activities of Dyads Composed of a Zinc Phthalocyanine Appended to an Organotin. Pharmaceuticals, 2021, 14, 413.	3.8	6
68	Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/ \hat{l}^2 -cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin. Frontiers of Materials Science, 2018, 12, 83-94.	2.2	5
69	Reduced graphene oxide-based superhydrophobic magnetic nanomaterial as high selective and recyclable sorbent for oil/organic solventÂwastewater treatment. International Journal of Environmental Science and Technology, 2022, 19, 8491-8506.	3.5	5
70	Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching. Photochemical and Photobiological Sciences, 2012, 11, 803.	2.9	4
71	Inactivation of Malaria Parasites in Blood: PDT vs Inhibition of Hemozoin Formation., 2016,,.		4
72	Synthesis of New Water Soluble β-Cyclodextrin@Curcumin Conjugates and In Vitro Safety Evaluation in Primary Cultures of Rat Cortical Neurons. International Journal of Molecular Sciences, 2021, 22, 3255.	4.1	4

#	Article	IF	CITATIONS
73	Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography. Molecules, 2021, 26, 7273.	3.8	4
74	Terbium-Based AGulX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals, 2021, 14, 396.	3.8	3
75	Different strategies of surface modification to improve the photocatalysis properties: pollutant adsorption, visible activation, and catalyst recovery., 2020,, 39-57.		1
76	Nanotechnology, photonics, and immunotherapy for cancer diagnostics and therapeutics. Nanophotonics, 2021, 10, 2969-2971.	6.0	0