
Harry R Gosker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2014, 189, e15-e62.	2.5	793
2	Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. American Journal of Clinical Nutrition, 2000, 71, 1033-1047.	2.2	325
3	Nutritional assessment and therapy in COPD: a European Respiratory Society statement. European Respiratory Journal, 2014, 44, 1504-1520.	3.1	233
4	Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respiratory Research, 2013, 14, 97.	1.4	227
5	Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax, 2007, 62, 944-949.	2.7	224
6	Pulmonary Function in Diabetes. Chest, 2010, 138, 393-406.	0.4	188
7	Striking Similarities in Systemic Factors Contributing to Decreased Exercise Capacity in Patients With Severe Chronic Heart Failure or COPD. Chest, 2003, 123, 1416-1424.	0.4	179
8	Mechanisms of Chronic Muscle Wasting and Dysfunction after an Intensive Care Unit Stay. A Pilot Study. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 821-830.	2.5	176
9	Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease,,. American Journal of Clinical Nutrition, 2002, 76, 113-119.	2.2	168
10	Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax, 2007, 63, 100-107.	2.7	149
11	Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. European Respiratory Journal, 2007, 30, 245-252.	3.1	139
12	The mechanisms of cachexia underlying muscle dysfunction in COPD. Journal of Applied Physiology, 2013, 114, 1253-1262.	1.2	120
13	A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. Journal of Applied Physiology, 2007, 103, 739-746.	1.2	98
14	Autophagy in Locomotor Muscles of Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1313-1320.	2.5	92
15	Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD. Journal of Applied Physiology, 2013, 114, 1319-1328.	1.2	91
16	Is age-related decline in lean mass and physical function accelerated by obstructive lung disease or smoking?. Thorax, 2011, 66, 961-969.	2.7	85
17	Extrapulmonary Manifestations of Chronic Obstructive Pulmonary Disease in a Mouse Model of Chronic Cigarette Smoke Exposure. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 710-716.	1.4	79
18	The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease. American Journal of Clinical Nutrition, 2012, 96, 516-526.	2.2	78

HARRY R GOSKER

#	Article	IF	CITATIONS
19	Metabolic and Structural Changes in Lower-Limb Skeletal Muscle Following Neuromuscular Electrical Stimulation: A Systematic Review. PLoS ONE, 2013, 8, e69391.	1.1	67
20	The development and validation of the Bronchiectasis Health Questionnaire. European Respiratory Journal, 2017, 49, 1601532.	3.1	63
21	Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (<scp>Copd</scp>); implications for stratified medicine?. Muscle and Nerve, 2013, 48, 488-497.	1.0	61
22	Altered antioxidant status in peripheral skeletal muscle of patients with COPD. Respiratory Medicine, 2005, 99, 118-125.	1.3	56
23	The Functional, Metabolic, and Anabolic Responses to Exercise Training in Renal Transplant and Hemodialysis Patients. Transplantation, 2007, 83, 1059-1068.	0.5	56
24	Systemic Inflammation and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease:ÂState of the Art and Novel Insights inÂRegulation of Muscle Plasticity. Clinics in Chest Medicine, 2007, 28, 537-552.	0.8	50
25	Low-grade adipose tissue inflammation in patients with mild-to-moderate chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2011, 94, 1504-1512.	2.2	50
26	Psychological co-morbidities in COPD: Targeting systemic inflammation, a benefit for both?. European Journal of Pharmacology, 2019, 842, 99-110.	1.7	48
27	Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia. Journal of Applied Physiology, 2013, 114, 1619-1628.	1.2	45
28	Exercise training restores uncoupling protein-3 content in limb muscles of patients with chronic obstructive pulmonary disease. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E976-E981.	1.8	41
29	Central Fat and Peripheral Muscle. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 8-13.	2.5	41
30	Dietary fibre and fatty acids in chronic obstructive pulmonary disease risk and progression: a systematic review. Respirology, 2014, 19, 176-184.	1.3	39
31	Peroxisome proliferator-activated receptors: a therapeutic target in COPD?. European Respiratory Journal, 2008, 31, 502-508.	3.1	36
32	Hypoxia and muscle maintenance regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 548-553.	1.3	36
33	Increased Myogenic and Protein Turnover Signaling in Skeletal Muscle of Chronic Obstructive Pulmonary Disease Patients With Sarcopenia. Journal of the American Medical Directors Association, 2017, 18, 637.e1-637.e11.	1.2	36
34	Muscle Quality is More Impaired in Sarcopenic Patients With Chronic Obstructive Pulmonary Disease. Journal of the American Medical Directors Association, 2016, 17, 415-420.	1.2	35
35	Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1α in Mesenchymal Transition. PLoS ONE, 2014, 9, e107757.	1.1	34
36	Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Journal of Applied Physiology, 2015, 118, 200-211.	1.2	34

HARRY R GOSKER

#	Article	IF	CITATIONS
37	Impaired exercise training-induced muscle fiber hypertrophy and Akt/mTOR pathway activation in hypoxemic patients with COPD. Journal of Applied Physiology, 2015, 118, 1040-1049.	1.2	34
38	The pathophysiology of cachexia in chronic obstructive pulmonary disease. Current Opinion in Supportive and Palliative Care, 2009, 3, 282-287.	0.5	30
39	Cognitive impairment in chronic obstructive pulmonary disease: disease burden, determinants and possible future interventions. Expert Review of Respiratory Medicine, 2018, 12, 1061-1074.	1.0	30
40	Systemic and Pulmonary Oxidative Stress After Single-Leg Exercise in COPD. Chest, 2009, 136, 1291-1300.	0.4	29
41	Pathways associated with reduced quadriceps oxidative fibres and endurance in COPD. European Respiratory Journal, 2013, 41, 1275-1283.	3.1	29
42	Resveratrol for patients with chronic obstructive pulmonary disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 138-144.	1.3	29
43	Muscle metabolic status in patients with severe COPD with and without long-term prednisolone. European Respiratory Journal, 2000, 16, 247.	3.1	28
44	Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1α-dependent manner. Cellular Signalling, 2014, 26, 1837-1845.	1.7	28
45	Skeletal muscle mitophagy in chronic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 427-433.	1.3	27
46	Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial. Clinical Nutrition, 2020, 39, 405-413.	2.3	27
47	Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clinical Nutrition, 2020, 39, 2989-2997.	2.3	25
48	Towards Personalized Management of Sarcopenia in COPD. International Journal of COPD, 2021, Volume 16, 25-40.	0.9	24
49	Nutrition as a modifiable factor in the onset and progression of pulmonary function impairment in COPD: a systematic review. Nutrition Reviews, 2022, 80, 1434-1444.	2.6	23
50	The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clinical Nutrition, 2018, 37, 1852-1861.	2.3	21
51	Quadriceps muscle strength in scoliosis. European Respiratory Journal, 2009, 34, 1429-1435.	3.1	20
52	Distinct skeletal muscle molecular responses to pulmonary rehabilitation in chronic obstructive pulmonary disease: a cluster analysis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 311-322.	2.9	19
53	Preserved muscle oxidative metabolic phenotype in newly diagnosed nonâ€small cell lung cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 164-173.	2.9	16
54	Alterations in Skeletal Muscle Oxidative Phenotype in Mice Exposed to 3 Weeks of Normobaric Hypoxia. Journal of Cellular Physiology, 2016, 231, 377-392.	2.0	16

HARRY R GOSKER

#	Article	IF	CITATIONS
55	Chronic obstructive pulmonary disease patient journey. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 278-283.	1.3	15
56	The Muscle Oxidative Regulatory Response to Acute Exercise Is Not Impaired in Less Advanced COPD Despite a Decreased Oxidative Phenotype. PLoS ONE, 2014, 9, e90150.	1.1	11
57	Impaired Skeletal Muscle Kynurenine Metabolism in Patients with Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 2019, 8, 915.	1.0	11
58	Role of acute exacerbations in skeletal muscle impairment in COPD. Expert Review of Respiratory Medicine, 2021, 15, 103-115.	1.0	11
59	Rasch analysis and impact factor methods both yield valid and comparable measures of health status in interstitial lung disease. Journal of Clinical Epidemiology, 2015, 68, 1019-1027.	2.4	10
60	Metabolic and functional effects of glutamate intake in patients with chronic obstructive pulmonary disease (COPD). Clinical Nutrition, 2008, 27, 408-415.	2.3	8
61	Working memory training efficacy in COPD: the randomised, double-blind, placebo-controlled Cogtrain trial. ERJ Open Research, 2021, 7, 00475-2021.	1.1	5
62	Cognitive performance in relation to metabolic disturbances in patients with COPD. Clinical Nutrition, 2021, 40, 2061-2067.	2.3	3
63	Effect of targeted nutrient supplementation on physical activity and health-related quality of life in COPD: study protocol for the randomised controlled NUTRECOVER trial. BMJ Open, 2022, 12, e059252.	0.8	3
64	Muscle Metabolic Modulation by Chronic Hypoxia. Journal of Proteome Research, 2007, 6, 3400-3401.	1.8	2
65	Reference values for vastus lateralis fiber type proportions and fiber size. Journal of Applied Physiology, 2013, 115, 771-771.	1.2	2
66	Pulmonary inflammation-induced alterations in key regulators of mitophagy and mitochondrial biogenesis in murine skeletal muscle. BMC Pulmonary Medicine, 2020, 20, 20.	0.8	2
67	Diabetes and Lung Function: Response. Chest, 2011, 139, 236.	0.4	Ο