Aurelie Deveau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606060/publications.pdf

Version: 2024-02-01

45 papers 4,489 citations

186265
28
h-index

254184 43 g-index

47 all docs

47 docs citations

47 times ranked

5575 citing authors

#	Article	IF	CITATIONS
1	Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. Journal of Fungi (Basel, Switzerland), 2022, 8, 706.	3.5	6
2	Colonization of Naive Roots from <i>Populus tremula</i> \tilde{A} — <i>alba</i> Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
3	Geographicalâ€based variations in white truffle <i>Tuber magnatum</i> aroma is explained by quantitative differences in key volatile compounds. New Phytologist, 2021, 230, 1623-1638.	7. 3	24
4	Aroma and bacterial communities dramatically change with storage of fresh white truffle Tuber magnatum. LWT - Food Science and Technology, 2021, 151, 112125.	5.2	11
5	Two ectomycorrhizal truffles, <i>Tuber melanosporum</i> and <i>T.Âaestivum</i> , endophytically colonise roots of nonâ€ectomycorrhizal plants in natural environments. New Phytologist, 2020, 225, 2542-2556.	7. 3	50
6	Inhibitions Dominate but Stimulations and Growth Rescues Are Not Rare Among Bacterial Isolates from Grains of Forest Soil. Microbial Ecology, 2020, 80, 872-884.	2.8	2
7	Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiology, 2019, 84, 103251.	4.2	32
8	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	3.5	31
9	Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biology and Biotechnology, 2019, 6, 1.	5.1	17
10	New insights into black truffle biology: discovery of the potential connecting structure between a Tuber aestivum ascocarp and its host root. Mycorrhiza, 2019, 29, 219-226.	2.8	9
11	Linking soil's volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environmental Microbiology, 2019, 21, 3313-3327.	3.8	17
12	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
13	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a secreted βâ€1,4 endoglucanase that plays a key role in symbiosis development. New Phytologist, 2018, 220, 1309-1321.	7.3	49
14	Aboveground overyielding in a mixed temperate forest is not explained by belowground processes. Oecologia, 2018, 188, 1183-1193.	2.0	5
15	Mycorrhizal microbiomes. Mycorrhiza, 2018, 28, 403-409.	2.8	22
16	Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls?. FEMS Microbiology Ecology, 2018, 94, .	2.7	43
17	A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	12
18	Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathogens, 2017, 13, e1006578.	4.7	59

#	Article	IF	Citations
19	How does the tree root microbiome assemble? Influence of ectomycorrhizal species on <scp><i>P</i></scp> <i>inus sylvestris</i> root bacterial communities. Environmental Microbiology, 2016, 18, 1303-1305.	3.8	11
20	Role of secondary metabolites in the interaction between <i>Pseudomonas fluorescens </i> microorganisms under iron-limited conditions. FEMS Microbiology Ecology, 2016, 92, fiw107.	2.7	39
21	Ecology of the forest microbiome: Highlights of temperate and borealÂecosystems. Soil Biology and Biochemistry, 2016, 103, 471-488.	8.8	140
22	Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum) Tj ETQq0	0 0 rgBT /	Overlock 10
23	8 An Emerging Interdisciplinary Field: Fungal–Bacterial Interactions. , 2016, , 161-178.		4
24	Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 2016, 26, 389-399.	2.8	75
25	Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 69, 146-159.	2.8	30
26	Pseudomonas fluorescens Pirates both Ferrioxamine and Ferricoelichelin Siderophores from Streptomyces ambofaciens. Applied and Environmental Microbiology, 2015, 81, 3132-3141.	3.1	62
27	The Role of the Microbiome of Truffles in Aroma Formation: a Meta-Analysis Approach. Applied and Environmental Microbiology, 2015, 81, 6946-6952.	3.1	112
28	Bacteria associated with truffleâ€fruiting bodies contribute to truffle aroma. Environmental Microbiology, 2015, 17, 2647-2660.	3.8	134
29	Effector MiSSP7 of the mutualistic fungus <i>Laccaria bicolor</i> stabilizes the <i>Populus</i> JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8299-8304.	7.1	329
30	Black truffle $\langle i \rangle$ $\hat{a} \in \langle i \rangle$ associated bacterial communities during the development and maturation of $\langle scp \rangle \langle i \rangle \langle scp \rangle \langle i \rangle$ uber melanosporum $\langle i \rangle$ ascocarps and putative functional roles. Environmental Microbiology, 2014, 16, 2831-2847.	3.8	133
31	Gluconic acid-producing Pseudomonas sp. prevent \hat{I}^3 -actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Archives of Microbiology, 2014, 196, 619-627.	2.2	10
32	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	2.6	69
33	An improved method compatible with metagenomic analyses to extract genomic DNA from soils in <i>Tuber melanosporum </i> orchards. Journal of Applied Microbiology, 2013, 115, 163-170.	3.1	19
34	Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast Transition in Candida albicans. Eukaryotic Cell, 2012, 11, 1219-1225.	3.4	97
35	Communication Between Plant, Ectomycorrhizal Fungi and Helper Bacteria., 2012,, 229-247.		4
36	Linking Quorum Sensing Regulation and Biofilm Formation by Candida albicans. Methods in Molecular Biology, 2011, 692, 219-233.	0.9	44

#	Article	IF	CITATIONS
37	<i>Pseudomonas fluorescens</i> BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environmental Microbiology Reports, 2011, 3, 203-210.	2.4	53
38	Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiology and Molecular Biology Reviews, 2011, 75, 583-609.	6.6	694
39	Roles of Ras1 Membrane Localization during Candida albicans Hyphal Growth and Farnesol Response. Eukaryotic Cell, 2011, 10, 1473-1484.	3.4	62
40	Farnesol Induces Hydrogen Peroxide Resistance in Candida albicans Yeast by Inhibiting the Ras-Cyclic AMP Signaling Pathway. Eukaryotic Cell, 2010, 9, 569-577.	3.4	94
41	Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus <i>Laccaria bicolor</i> S238N and the helper bacterium <i>Pseudomonas fluorescens</i> BBc6R8. Environmental Microbiology Reports, 2010, 2, 560-568.	2.4	76
42	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452, 88-92.	27.8	1,003
43	The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> S238N. New Phytologist, 2008, 180, 379-390.	7.3	65
44	Cross-validating Sun-shade and 3D models of light absorption by a tree-crop canopy. Agricultural and Forest Meteorology, 2008, 148, 549-564.	4.8	30
45	The mycorrhiza helper <i>Pseudomonas fluorescens </i> BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus <i>Laccaria bicolor </i> S238N. New Phytologist, 2007, 175, 743-755.	7.3	156