
Aurelie Deveau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606060/publications.pdf Version: 2024-02-01

AUDELLE DEVEAU

#	Article	IF	CITATIONS
1	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452, 88-92.	27.8	1,003
2	Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiology and Molecular Biology Reviews, 2011, 75, 583-609.	6.6	694
3	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
4	Effector MiSSP7 of the mutualistic fungus <i>Laccaria bicolor</i> stabilizes the <i>Populus</i> JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8299-8304.	7.1	329
5	The mycorrhiza helper <i>Pseudomonas fluorescens </i> BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus <i>Laccaria bicolor </i> S238N. New Phytologist, 2007, 175, 743-755.	7.3	156
6	Ecology of the forest microbiome: Highlights of temperate and borealÂecosystems. Soil Biology and Biochemistry, 2016, 103, 471-488.	8.8	140
7	Bacteria associated with truffleâ€fruiting bodies contribute to truffle aroma. Environmental Microbiology, 2015, 17, 2647-2660.	3.8	134
8	Black truffle <i>â€</i> associated bacterial communities during the development and maturation of <scp><i>T</i></scp> <i>uber melanosporum</i> ascocarps and putative functional roles. Environmental Microbiology, 2014, 16, 2831-2847.	3.8	133
9	The Role of the Microbiome of Truffles in Aroma Formation: a Meta-Analysis Approach. Applied and Environmental Microbiology, 2015, 81, 6946-6952.	3.1	112
10	Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast Transition in Candida albicans. Eukaryotic Cell, 2012, 11, 1219-1225.	3.4	97
11	Farnesol Induces Hydrogen Peroxide Resistance in Candida albicans Yeast by Inhibiting the Ras-Cyclic AMP Signaling Pathway. Eukaryotic Cell, 2010, 9, 569-577.	3.4	94
12	Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus <i>Laccaria bicolor</i> S238N and the helper bacterium <i>Pseudomonas fluorescens</i> BBc6R8. Environmental Microbiology Reports, 2010, 2, 560-568.	2.4	76
13	Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 2016, 26, 389-399.	2.8	75
14	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> . Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	2.6	69
15	The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> S238N. New Phytologist, 2008, 180, 379-390.	7.3	65
16	Roles of Ras1 Membrane Localization during Candida albicans Hyphal Growth and Farnesol Response. Eukaryotic Cell, 2011, 10, 1473-1484.	3.4	62
17	Pseudomonas fluorescens Pirates both Ferrioxamine and Ferricoelichelin Siderophores from Streptomyces ambofaciens. Applied and Environmental Microbiology, 2015, 81, 3132-3141.	3.1	62
	Certainties and uncertainties about the life cycle of the $P\tilde{A}$ @rigord black truffle (Tuber melanosporum) Ti ETOO	0.0.0 rgBT	Overlock 101

Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum) Tj ETQq0 0 0 0 ggBT /Overlock 10 T

Aurelie Deveau

#	Article	IF	CITATIONS
19	Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathogens, 2017, 13, e1006578.	4.7	59
20	<i>Pseudomonas fluorescens</i> BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environmental Microbiology Reports, 2011, 3, 203-210.	2.4	53
21	Two ectomycorrhizal truffles, <i>Tuber melanosporum</i> and <i>T.Âaestivum</i> , endophytically colonise roots of nonâ€ectomycorrhizal plants in natural environments. New Phytologist, 2020, 225, 2542-2556.	7.3	50
22	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a secreted βâ€1,4 endoglucanase that plays a key role in symbiosis development. New Phytologist, 2018, 220, 1309-1321.	7.3	49
23	Linking Quorum Sensing Regulation and Biofilm Formation by Candida albicans. Methods in Molecular Biology, 2011, 692, 219-233.	0.9	44
24	Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls?. FEMS Microbiology Ecology, 2018, 94, .	2.7	43
25	Role of secondary metabolites in the interaction between <i>Pseudomonas fluorescens</i> and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology, 2016, 92, fiw107.	2.7	39
26	Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiology, 2019, 84, 103251.	4.2	32
27	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	3.5	31
28	Cross-validating Sun-shade and 3D models of light absorption by a tree-crop canopy. Agricultural and Forest Meteorology, 2008, 148, 549-564.	4.8	30
29	Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria. Microbial Ecology, 2015, 69, 146-159.	2.8	30
30	Geographicalâ€based variations in white truffle <i>Tuber magnatum</i> aroma is explained by quantitative differences in key volatile compounds. New Phytologist, 2021, 230, 1623-1638.	7.3	24
31	Mycorrhizal microbiomes. Mycorrhiza, 2018, 28, 403-409.	2.8	22
32	An improved method compatible with metagenomic analyses to extract genomic DNA from soils in <i>Tuber melanosporum</i> orchards. Journal of Applied Microbiology, 2013, 115, 163-170.	3.1	19
33	Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biology and Biotechnology, 2019, 6, 1.	5.1	17
34	Linking soil's volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environmental Microbiology, 2019, 21, 3313-3327.	3.8	17
35	Colonization of Naive Roots from <i>Populus tremula</i> × <i>alba</i> Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
36	A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	12

Aurelie Deveau

#	Article	IF	CITATIONS
37	How does the tree root microbiome assemble? Influence of ectomycorrhizal species on <scp><i>P</i></scp> <i>inus sylvestris</i> root bacterial communities. Environmental Microbiology, 2016, 18, 1303-1305.	3.8	11
38	Aroma and bacterial communities dramatically change with storage of fresh white truffle Tuber magnatum. LWT - Food Science and Technology, 2021, 151, 112125.	5.2	11
39	Gluconic acid-producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Archives of Microbiology, 2014, 196, 619-627.	2.2	10
40	New insights into black truffle biology: discovery of the potential connecting structure between a Tuber aestivum ascocarp and its host root. Mycorrhiza, 2019, 29, 219-226.	2.8	9
41	Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. Journal of Fungi (Basel, Switzerland), 2022, 8, 706.	3.5	6
42	Aboveground overyielding in a mixed temperate forest is not explained by belowground processes. Oecologia, 2018, 188, 1183-1193.	2.0	5
43	Communication Between Plant, Ectomycorrhizal Fungi and Helper Bacteria. , 2012, , 229-247.		4
44	8 An Emerging Interdisciplinary Field: Fungal–Bacterial Interactions. , 2016, , 161-178.		4
45	Inhibitions Dominate but Stimulations and Growth Rescues Are Not Rare Among Bacterial Isolates from Grains of Forest Soil. Microbial Ecology, 2020, 80, 872-884.	2.8	2