
Anil K Choudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient concentrations affect the antimicrobial resistance profiles of cattle manures. Environmental Science and Pollution Research, 2023, 30, 25141-25147.	5.3	3
2	Zero Tillage, Residue Retention and System-Intensification with Legumes for Enhanced Pearl Millet Productivity and Mineral Biofortification. Sustainability, 2022, 14, 543.	3.2	13
3	Sole- or Dual-Crop Basis Residue Mulching and Zn Fertilization Lead to Improved Productivity, Rhizo-modulation and Soil Health in Zero-Tilled Pigeonpea–Wheat Cropping System. Journal of Soil Science and Plant Nutrition, 2022, 22, 1193-1214.	3.4	19
4	Role of Plant Nutrition in Disease Development and Management. , 2022, , 83-110.		1
5	Double zero tillage and foliar phosphorus fertilization coupled with microbial inoculants enhance maize productivity and quality in a maize–wheat rotation. Scientific Reports, 2022, 12, 3161.	3.3	17
6	No-Tillage with Residue Retention and Foliar Sulphur Nutrition Enhances Productivity, Mineral Biofortification and Crude Protein in Rainfed Pearl Millet under Typic Haplustepts: Elucidating the Responses Imposed on an Eight-Year Long-Term Experiment. Plants, 2022, 11, 943.	3.5	13
7	Foliar nutrient supplementation with micronutrient-embedded fertilizer increases biofortification, soil biological activity and productivity of eggplant. Scientific Reports, 2022, 12, 5146.	3.3	18
8	A 3-year field study reveals that agri-management practices drive the dynamics of dominant bacterial taxa in the rhizosphere of Cajanus cajan. Symbiosis, 2022, 86, 215-227.	2.3	6
9	Changes in soil properties, productivity and profitability as influenced by the adoption of site-specific integrated crop management technology in turmeric (Curcuma longa L.) in Eastern Himalayan acidic Inceptisol. Industrial Crops and Products, 2022, 180, 114745.	5.2	5
10	Climate Change-Induced Drought Impacts, Adaptation and Mitigation Measures in Semi-Arid Pastoral and Agricultural Watersheds. Sustainability, 2022, 14, 6.	3.2	8
11	Zinc-Coated Urea for Enhanced Zinc Biofortification, Nitrogen Use Efficiency and Yield of Basmati Rice under Typic Fluvents. Sustainability, 2022, 14, 104.	3.2	15
12	Foliar Application of Macro- and Micronutrients Improves the Productivity, Economic Returns, and Resource-Use Efficiency of Soybean in a Semiarid Climate. Sustainability, 2022, 14, 5825.	3.2	15
13	Rice Productivity, Zn Biofortification, and Nutrient-Use Efficiency as Influenced by Zn Fertilization Under Conventional Transplanted Rice and the System of Rice Intensification. Frontiers in Environmental Science, 2022, 10, .	3.3	11
14	Agricultural Management Practices Affect the Abundance of Markers of Phosphorus Cycle in Soil: Case Study with Pigeonpea and Soybean. Journal of Soil Science and Plant Nutrition, 2022, 22, 3012-3020.	3.4	8
15	Agricultural practices modulate the bacterial communities, and nitrogen cycling bacterial guild in rhizosphere: field experiment with soybean. Journal of the Science of Food and Agriculture, 2021, 101, 2687-2695.	3.5	34
16	Improving productivity, quality and biofortification in groundnut (<i>Arachis hypogaea</i> L.) through sulfur and zinc nutrition in alluvial soils of the semi-arid region of India. Journal of Plant Nutrition, 2021, 44, 1151-1174.	1.9	13
17	Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A â€ [~] Participatory-Mode' Technology Development and Dissemination. Sustainability, 2021, 13, 5425.	3.2	15
18	Energy budgeting and carbon footprints of zero-tilled pigeonpea–wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology. Energy, 2021, 231, 120862.	8.8	40

ANIL K CHOUDHARY

#	Article	IF	CITATIONS
19	Crop and water productivity, energy auditing, carbon footprints and soil health indicators of Bt-cotton transplanting led system intensification. Journal of Environmental Management, 2021, 300, 113732.	7.8	18
20	Elucidating Traditional Rice Varieties for Consilient Biotic and Abiotic Stress Management under Changing Climate with Landscape-Level Rice Biodiversity. Land, 2021, 10, 1058.	2.9	5
21	Comparative performance of conservation agriculture vis-a-vis organic and conventional farming, in enhancing plant attributes and rhizospheric bacterial diversity in Cajanus cajan: A field study. European Journal of Soil Biology, 2020, 99, 103197.	3.2	36
22	Root-shoot characteristics, yield and economics of mungbean (Vigna radiata L.) under variable rates of phosphorus and nitrogen. Bangladesh Journal of Botany, 2020, 49, 13-19.	0.4	4
23	System of rice intensification in promising rice hybrids in north-western Himalayas: crop and water productivity, quality, and economic profitability. Journal of Plant Nutrition, 2018, 41, 1020-1034.	1.9	18
24	Effect of AM fungi and phosphorus fertilization on P-use efficiency, nutrient acquisition and root morphology in pea (Pisum sativumL.) in an acid Alfisol. Journal of Plant Nutrition, 2018, 41, 689-701.	1.9	5
25	System of rice intensification in short duration rice hybrids under varying bio-physical regimes: New opportunities to enhance rice productivity and rural livelihoods in North-Western Himalayas under a participatory-mode technology transfer program. Journal of Plant Nutrition, 2018, 41, 2581-2605.	1.9	15
26	Low-Cost Vermi-Composting Technology and Its Application in Bio-Conversion of Obnoxious Weed Flora of North-Western Himalayas into Vermi-Compost. Communications in Soil Science and Plant Analysis, 2018, 49, 1429-1441.	1.4	13
27	Influence of staggered sown <i>Spring</i> sunflower (<i>Helianthus Annuus</i> L.) at varying intra–row spacing and applied–N on pre– and post–anthesis N dynamics and dry matter partitioning in Indo–Gangetic Plains Region. Communications in Soil Science and Plant Analysis, 2018, 49, 2002-2015.	1.4	7
28	Influence of summer legume residue recycling and varietal diversification on productivity, energetics, and nutrient dynamics in basmati rice–wheat cropping system of western Indo-Gangetic Plains. Journal of Plant Nutrition, 2018, 41, 1491-1506.	1.9	11
29	Organic cultivation of high yielding turmeric (Curcuma longa L.) cultivars: a viable alternative to enhance rhizome productivity, profitability, quality and resource-use efficiency in monkey–menace areas of north-western Himalayas. Industrial Crops and Products, 2018, 124, 495-504.	5.2	37
30	Bio-fortification potential of global wild annual lentil core collection. PLoS ONE, 2018, 13, e0191122.	2.5	41
31	<i>Bt-</i> Cotton–Vegetable-Based Intercropping Systems as Influenced by Crop Establishment Method And Planting Geometry Of <i>Bt</i> -Cotton In Indo-Gangetic Plains Region. Current Science, 2018, 115, 516.	0.8	16
32	High-Value Crops' Imbedded Intensive Cropping Systems for Enhanced Productivity, Resource-Use-Efficiency, Energetics and Soil-Health in Indo-Gangetic Plains. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 1073-1090.	1.0	10
33	Agronomic bio-fortification and quality enhancement in okra–pea cropping system through arbuscular mycorrhizal fungi at varying phosphorus and irrigation regimes in Himalayan acid alfisol. Journal of Plant Nutrition, 2017, 40, 1213-1229.	1.9	22
34	Tripartite symbiosis ofPisum–Glomus–Rhizobiumleads to enhanced productivity, nitrogen and phosphorus economy, quality, and biofortification in garden pea in a Himalayan acid Alfisol. Journal of Plant Nutrition, 2017, 40, 600-613.	1.9	8
35	Agronomic fortification of rice grains with secondary and micronutrients under differing crop management and soil moisture regimes in the north Indian Plains. Paddy and Water Environment, 2017, 15, 745-760.	1.8	25
36	Weed management in rice using crop competition-a review. Crop Protection, 2017, 95, 45-52.	2.1	105

ANIL K CHOUDHARY

#	Article	IF	CITATIONS
37	Influence of Dual Inoculation of AM Fungi and Rhizobium on Growth Indices, Production Economics, and Nutrient Use Efficiencies in Garden Pea (<i>Pisum sativum</i> L.). Communications in Soil Science and Plant Analysis, 2016, 47, 941-954.	1.4	11
38	AM fungi lead to fertilizer phosphorus economy and enhanced system productivity and profitability in okra (<i>Abelmoschus esculentus</i> L.)–pea (<i>Pisum sativum</i> L.) cropping system in Himalayan acid Alfisol. Journal of Plant Nutrition, 2016, 39, 1380-1390.	1.9	7
39	Potato production through bio-resources: Long-term effects on tuber productivity, quality, carbon sequestration and soil health in temperate Himalayas. Scientia Horticulturae, 2016, 213, 152-163.	3.6	31
40	Influence of field re-ponding pattern and plant spacing on rice root–shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy and Water Environment, 2016, 14, 45-59.	1.8	55
41	Influence of Glomus–Rhizobium Symbiosis on Productivity, Root Morphology and Soil Fertility in Garden Pea in Himalayan Acid Alfisol. Communications in Soil Science and Plant Analysis, 2016, 47, 787-798.	1.4	4
42	Soil Factors Associated with Micronutrient Acquisition in Crops- Biofortification Perspective. , 2016, , 159-176.		29
43	Influence of AM fungi, inorganic phosphorus and irrigation regimes on plant water relations and soil physical properties in okra (<i>Abelmoschus esculentus</i> L) – pea (<i>Pisum sativum</i> L) cropping system in Himalayan acid alfisol. Journal of Plant Nutrition, 2016, 39, 666-682.	1.9	24
44	Scaling-Up of Protected Cultivation in Himachal Pradesh, India. Current Science, 2016, 111, 272.	0.8	16
45	Influence of AM fungi and inorganic phosphorus on fruit and root characteristics, root colonization and soil phosphorus in okra-pea cropping system in Himalayan acid Alfisol. Indian Journal of Horticulture, 2016, 73, 213.	0.1	4
46	Growth Behavior, Nutrient Harvest Index, and Soil Fertility in Okra-Pea Cropping System as Influenced by AM Fungi, Applied Phosphorus, and Irrigation Regimes in Himalayan Acidic Alfisol. Communications in Soil Science and Plant Analysis, 2015, 46, 2212-2233.	1.4	14
47	Possibilities of Improving Performance of Direct Seeded Rice Using Plant Growth Regulators: A Review. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 909-922.	1.0	10
48	Enhancing Plant Water Relations, Quality, and Productivity of Pea (<i>Pisum sativum</i> L.) through Arbuscular Mycorrhizal Fungi, Inorganic Phosphorus, and Irrigation Regimes in an Himalayan Acid Alfisol. Communications in Soil Science and Plant Analysis, 2015, 46, 80-93.	1.4	20
49	On-Farm Participatory Technology Development on Forage Cutting and Nitrogen Management in Dual-Purpose Wheat (<i>Triticum aestivum</i>) in Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 2014, 45, 741-750.	1.4	16
50	Influence of Inorganic Phosphorus, VAM Fungi, and Irrigation Regimes on Crop Productivity and Phosphorus Transformations in Okra (<i>Abelmoschus esculentus</i> L)–Pea (<i>Pisum sativum</i> L) Cropping System in an Acid Alfisol. Communications in Soil Science and Plant Analysis, 2014, 45, 953-967.	1.4	33
51	Scaling Up of Pulse Production under Frontline Demonstration Technology Transfer Program in Himachal Himalayas, India. Communications in Soil Science and Plant Analysis, 2014, 45, 1934-1948.	1.4	23
52	Integrated Nutrient-Management Technology for Direct-Seeded Upland Rice (<i>Oryza sativa</i>) in Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 2014, 45, 777-784.	1.4	35
53	Front Line Demonstration Program: An Effective Technology Transfer Tool for Adoption of Oilseed Production Technology in Himachal Pradesh, India. Communications in Soil Science and Plant Analysis, 2014, 45, 1480-1498.	1.4	12
54	Bioresource Nutrient Recycling and Its Relationship with Biofertility Indicators of Soil Health and Nutrient Dynamics in Rice–Wheat Cropping System. Communications in Soil Science and Plant Analysis, 2014, 45, 912-924.	1.4	50

ANIL K CHOUDHARY

#	Article	IF	CITATIONS
55	On-Farm Participatory Technology Development Effects on Resource Conservation Technologies in Rainfed Upland Paddy in Himachal Pradesh, India. Communications in Soil Science and Plant Analysis, 2013, 44, 2605-2617.	1.4	20
56	Technology Transfer Model on Integrated Nutrient Management Technology for Sustainable Crop Production in High-Value Cash Crops and Vegetables in Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 2013, 44, 1684-1699.	1.4	47
57	Effects of Vesicular Arbuscular Mycorrhizae and Applied Phosphorus through Targeted Yield Precision Model on Root Morphology, Productivity, and Nutrient Dynamics in Soybean in an Acid Alfisol. Communications in Soil Science and Plant Analysis, 2013, 44, 2587-2604.	1.4	25
58	VAM Fungi Spore Populations in Different Farming Situations and Their Effect on Productivity and Nutrient Dynamics in Maize and Soybean in Himalayan Acid Alfisol. Communications in Soil Science and Plant Analysis, 2013, 44, 3327-3339.	1.4	15
59	Effect of Vesicular Arbuscular–Mycorrhizal Fungi and Phosphorus Application through Soil-Test Crop Response Precision Model on Crop Productivity, Nutrient Dynamics, and Soil Fertility in Soybean–Wheat–Soybean Crop Sequence in an Acidic Alfisol. Communications in Soil Science and Plant Analysis. 2013. 44. 2032-2041.	1.4	16
60	Influence of Vesicular Arbuscular Mycorrhizal Fungi and Applied Phosphorus on Root Colonization in Wheat and Plant Nutrient Dynamics in a Phosphorus-Deficient Acid Alfisol of Western Himalayas. Communications in Soil Science and Plant Analysis, 2011, 42, 1177-1186.	1.4	52
61	Improving Phosphorus Use through Co-inoculation of Vesicular Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Bacteria in Maize in an Acidic Alfisol. Communications in Soil Science and Plant Analysis, 2011, 42, 2265-2273.	1.4	43
62	Evaluation of Targeted Yield Precision Model for Soybean and Toria Crops on Farmers' Fields under Sub-Humid, Sub-Tropical, Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 2011, 42, 2452-2460.	1.4	26
63	Agronomic Practices to Enhance Nutrient Acquisition, Grain Quality, Resource-Use Efficiency in Direct- Seeded Aerobic Rice in Eastern India. Current Journal of Applied Science and Technology, 0, , 102-111.	0.3	0
64	Synergistic Influence of Sulphur and Boron Fertilization on Enhancing the Productivity of Rapeseed (<i>Brassica napus</i> L.) and Nutrient Status in Subtropical Acidic Soil of Assam, India. Communications in Soil Science and Plant Analysis, 0, , 1-20.	1.4	0