Zunyao Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6059325/zunyao-wang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 167 5,156 42 h-index g-index citations papers 6.21 6,407 169 8.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
167	Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. <i>Chemical Engineering Journal</i> , 2016 , 301, 1-11	14.7	215
166	Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. <i>Water Research</i> , 2015 , 85, 1-10	12.5	162
165	Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 1-10	21.8	139
164	Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. <i>Water Research</i> , 2016 , 103, 48-57	12.5	134
163	Ozonation of indigo enhanced by carboxylated carbon nanotubes: performance optimization, degradation products, reaction mechanism and toxicity evaluation. <i>Water Research</i> , 2015 , 68, 316-27	12.5	106
162	Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. <i>Water Research</i> , 2016 , 103, 215-223	12.5	106
161	Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators. <i>Aquatic Toxicology</i> , 2015 , 161, 25-32	5.1	103
160	Degradation of aqueous 2,4,4STrihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. <i>Water Research</i> , 2018 , 143, 176-18	87 ^{2.5}	102
159	Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1136-115	4 ^{12.8}	98
158	Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. <i>Chemosphere</i> , 2018 , 196, 95-104	8.4	97
157	Hydroxyl Radical Based Photocatalytic Degradation of Halogenated Organic Contaminants and Paraffin on Silica Gel. <i>Environmental Science & Environmental Science & Environment</i>	10.3	92
156	Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. <i>Aquatic Toxicology</i> , 2014 , 150, 9-16	5.1	87
155	Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification. <i>Chemical Engineering Journal</i> , 2017 , 330, 345-354	14.7	85
154	Degradation of UV-filter benzophenone-3 in aqueous solution using persulfate catalyzed by cobalt ferrite. <i>Chemical Engineering Journal</i> , 2017 , 326, 1197-1209	14.7	80
153	Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). <i>Chemosphere</i> , 2017 , 177, 144-148	8.4	73
152	TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. <i>Scientific Reports</i> , 2016 , 6, 21827	4.9	73
151	Effective degradation of fenitrothion by zero-valent iron powder (Fe0) activated persulfate in aqueous solution: Kinetic study and product identification. <i>Chemical Engineering Journal</i> , 2019 , 358, 14	7 9 4748	18 ⁷³

150	Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter. <i>Water Research</i> , 2013 , 47, 153-62	12.5	71	
149	Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. <i>Chemosphere</i> , 2013 , 93, 82-9	8.4	71	
148	Catalytic degradation of 2-phenylbenzimidazole-5-sulfonic acid by peroxymonosulfate activated with nitrogen and sulfur co-doped CNTs-COOH loaded CuFe2O4. <i>Chemical Engineering Journal</i> , 2017 , 307, 95-104	14.7	69	
147	Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use brominated flame retardants: a combined experimental and theoretical study. <i>Aquatic Toxicology</i> , 2013 , 140-141, 314-23	5.1	66	
146	Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. <i>Chemosphere</i> , 2017 , 185, 833-843	8.4	64	
145	Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. <i>Environmental Science & Description (Science &</i>	10.3	63	
144	Investigation on Intramolecular Hydrogen Bond and Some Thermodynamic Properties of Polyhydroxylated Anthraquinones. <i>Journal of Chemical & Data, 2012, 57, 2442-2455</i>	2.8	63	
143	Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products. <i>Water Research</i> , 2018 , 143, 1-9	12.5	58	
142	Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. Journal of Hazardous Materials, 2014 , 275, 89-98	12.8	56	
141	Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by density functional theory. <i>Computational and Theoretical Chemistry</i> , 2005 , 755, 137-145		56	
140	Solid surface-mediated photochemical transformation of decabromodiphenyl ether (BDE-209) in aqueous solution. <i>Water Research</i> , 2017 , 125, 114-122	12.5	55	
139	Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 115, 112-8	7	55	
138	Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation. <i>Science of the Total Environment</i> , 2016 , 541, 167-175	10.2	54	
137	Activation of ferrate(VI) by ammonia in oxidation of flumequine: Kinetics, transformation products, and antibacterial activity assessment. <i>Chemical Engineering Journal</i> , 2017 , 323, 584-591	14.7	54	
136	Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. <i>Water Research</i> , 2016 , 104, 34-43	12.5	53	
135	Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. <i>Chemosphere</i> , 2015 , 135, 182-8	8.4	53	
134	Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. <i>Environmental Pollution</i> , 2016 , 208, 732-8	9.3	49	
133	Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment. <i>Scientific Reports</i> , 2015 , 5, 9859	4.9	48	

132	In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish. <i>Science of the Total Environment</i> , 2017 , 590-591, 50-59	10.2	47
131	Photodegradation of Polyfluorinated Dibenzo-p-Dioxins in Organic Solvents: Experimental and Theoretical Studies. <i>Environmental Science & Environmental Environmenta</i>	10.3	47
130	Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols. <i>Environmental Science & Environmental Science & E</i>	10.3	46
129	Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. <i>Aquatic Toxicology</i> , 2015 , 161, 108-16	5.1	46
128	Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: Reaction kinetics and formation of co-oligomerization products. <i>Chemical Engineering Journal</i> , 2021 , 403, 126396	14.7	45
127	Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 119, 116-22	7	43
126	Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 198-203	11	42
125	Degradation kinetics and transformation products of chlorophene by aqueous permanganate. <i>Water Research</i> , 2018 , 138, 293-300	12.5	42
124	Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. <i>Chemosphere</i> , 2019 , 237, 124484	8.4	39
123	Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment. <i>PLoS ONE</i> , 2015 , 10, e0139580	3.7	39
122	Hepatic antioxidative responses to PCDPSs and estimated short-term biotoxicity in freshwater fish. <i>Aquatic Toxicology</i> , 2012 , 120-121, 90-8	5.1	39
121	Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation. <i>Journal of Hazardous Materials</i> , 2016 , 317, 81-89	12.8	38
120	Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products. <i>Water Research</i> , 2019 , 158, 338-349	12.5	37
119	Mechanism insights into the oxidative degradation of decabromodiphenyl ethane by potassium permanganate in acidic conditions. <i>Chemical Engineering Journal</i> , 2018 , 332, 267-276	14.7	37
118	Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 170, 259-266	7	36
117	Fe(VI)-Mediated Single-Electron Coupling Processes for the Removal of Chlorophene: A Combined Experimental and Computational Study. <i>Environmental Science & Experimental Science & Exp</i>	10.3	35
116	Photochemical behavior of benzophenone sunscreens induced by nitrate in aquatic environments. <i>Water Research</i> , 2019 , 153, 178-186	12.5	33
115	Ozonation of pentabromophenol in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment. <i>Chemosphere</i> , 2019 , 220, 546-555	8.4	32

(2012-2017)

114	Degradation of octafluorodibenzo-p-dioxin by UV/Fe(II)/potassium monopersulfate system: Kinetics, influence of coexisting chemicals, degradation products and pathways. <i>Chemical Engineering Journal</i> , 2017 , 319, 98-107	14.7	31
113	Catalytic effect of low concentration carboxylated multi-walled carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system. <i>Chemical Engineering Journal</i> , 2017, 321, 325-334	14.7	31
112	Effective degradation of 2,4-dihydroxybenzophenone by zero-valent iron powder (Fe)-activated persulfate in aqueous solution: Kinetic study, product identification and theoretical calculations. <i>Science of the Total Environment</i> , 2021 , 771, 144743	10.2	31
111	Enhanced Removal of Chlorophene and 17 th estradiol by Mn(III) in a Mixture Solution with Humic Acid: Investigation of Reaction Kinetics and Formation of Co-oligomerization Products. <i>Environmental Science & Environmental </i>	10.3	31
110	Evaluation of single and joint toxicity of perfluorooctane sulfonate and zinc to Limnodrilus hoffmeisteri: Acute toxicity, bioaccumulation and oxidative stress. <i>Journal of Hazardous Materials</i> , 2016 , 301, 342-9	12.8	30
109	Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. <i>Chemical Engineering Journal</i> , 2020 , 398, 125357	,14.7	30
108	Phototransformation of estrogens mediated by Mn(III), not by reactive oxygen species, in the presence of humic acids. <i>Chemosphere</i> , 2018 , 201, 224-233	8.4	30
107	Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. <i>Journal of Hazardous Materials</i> , 2013 , 262, 288-96	12.8	30
106	Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. <i>Aquatic Toxicology</i> , 2015 , 160, 142-50	5.1	29
105	Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory. <i>Computational and Theoretical Chemistry</i> , 2005 , 724, 221-227		29
104	A comparative study on antioxidant status combined with integrated biomarker response in Carassius auratus fish exposed to nine phthalates. <i>Environmental Toxicology</i> , 2015 , 30, 1125-34	4.2	28
103	Occurrence of polychlorinated diphenyl sulfides (PCDPSs) in surface sediments and surface water from the Nanjing section of the Yangtze River. <i>Environmental Science & Environmental Science & Enviro</i>	9 1 36 ³	28
102	Quantitative structure property relationships for predicting subcooled liquid vapor pressure (PL) of 209 polychlorinated diphenyl ethers (PCDEs) by DFT and the position of Cl substitution (PCS) methods. <i>Atmospheric Environment</i> , 2007 , 41, 3590-3603	5.3	28
101	Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A. <i>Water Research</i> , 2020 , 169, 115273	12.5	28
100	Products distribution and contribution of (de)chlorination, hydroxylation and coupling reactions to 2,4-dichlorophenol removal in seven oxidation systems. <i>Water Research</i> , 2021 , 194, 116916	12.5	28
	2,4-dichiorophenoriemovarim seven oxidation systems. Water Research, 2021, 194, 110910		
99	Thermal- and photo-induced degradation of perfluorinated carboxylic acids: Kinetics and	12.5	27
99 98	Thermal- and photo-induced degradation of perfluorinated carboxylic acids: Kinetics and mechanism. <i>Water Research</i> , 2017 , 126, 12-18 Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl	12.5 2.9	27 26

96	Estimation of the aqueous solubility (IgSw) of all polychlorinated dibenzo-furans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) congeners by density functional theory. <i>Computational and Theoretical Chemistry</i> , 2006 , 766, 25-33		26
95	Enhanced degradation performance of bisphenol M using peroxymonosulfate activated by zero-valent iron in aqueous solution: Kinetic study and product identification. <i>Chemosphere</i> , 2019 , 221, 314-323	8.4	26
94	Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI). <i>Chemical Engineering Journal</i> , 2019 , 365, 142-152	14.7	25
93	Kinetics and mechanism insights into the photodegradation of hydroperfluorocarboxylic acids in aqueous solution. <i>Chemical Engineering Journal</i> , 2018 , 348, 644-652	14.7	25
92	Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions. <i>Aquatic Toxicology</i> , 2015 , 164, 145-54	5.1	23
91	Acute and subacute oral toxicity of polychlorinated diphenyl sulfides in mice: determining LD50 and assessing the status of hepatic oxidative stress. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1485-93	3.8	22
90	Synthesis and QSPR study on environment-related properties of polychlorinated diphenyl sulfides (PCDPSs). <i>Chemosphere</i> , 2012 , 88, 844-54	8.4	22
89	The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium phosphoreum, Danio rerio, Limnodrilus hoffmeisteri, and Carassius auratus). <i>Environmental Science and Pollution Research</i> , 2018 , 25, 9636-9646	5.1	20
88	The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry. <i>Scientific Reports</i> , 2017 , 7, 7756	4.9	20
87	The photodegradation of 1,3,6,8-tetrabromocarbazole in n-hexane and in solid-mediated aqueous system: Kinetics and transformation mechanisms. <i>Chemical Engineering Journal</i> , 2019 , 375, 121986	14.7	19
86	Fe-Activated Peroxymonosulfate Enhances the Degradation of Dibutyl Phthalate on Ground Quartz Sand. <i>Environmental Science & Enhances amp; Technology</i> , 2020 , 54, 9052-9061	10.3	19
85	Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu(2+)/H2O2 and analysis on their structure-reactivity relationship. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 1898-904	5.1	19
84	Subacute oral toxicity of BDE-15, CDE-15, and HODE-15 in ICR male mice: assessing effects on hepatic oxidative stress and metals status and ascertaining the protective role of vitamin E. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 1924-1935	5.1	19
83	Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides. <i>Environmental Science & Environmental Science & E</i>	10.3	19
82	Biochemical biomarkers in liver and gill tissues of freshwater fish Carassius auratus following in vivo exposure to hexabromobenzene. <i>Environmental Toxicology</i> , 2014 , 29, 1460-70	4.2	19
81	A combined experimental and computational study on the oxidative degradation of bromophenols by Fe(VI) and the formation of self-coupling products. <i>Environmental Pollution</i> , 2020 , 258, 113678	9.3	19
8o	Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products. <i>Chemical Engineering Journal</i> , 2020 , 402, 126140	14.7	19
79	Ozonation of the UV filter benzophenone-4 in aquatic environments: Intermediates and pathways. <i>Chemosphere</i> , 2016 , 149, 76-83	8.4	19

(2020-2016)

78	The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values. <i>Chemosphere</i> , 2016 , 152, 496-502	8.4	19	
77	Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study. <i>Science of the Total Environment</i> , 2019 , 671, 705-713	10.2	18	
76	Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 125, 61-7	1 ⁷	18	
75	Responses of antioxidant defense system to polyfluorinated dibenzo-p-dioxins (PFDDs) exposure in liver of freshwater fish Carassius auratus. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 126, 170-176	7	18	
74	Understanding the ozonated degradation of sulfadimethoxine, exploration of reaction site, and classification of degradation products. <i>Chemosphere</i> , 2018 , 212, 228-236	8.4	18	
73	Studies of thermodynamic properties and relative stability of a series of polyfluorinated dibenzo-p-dioxins by density functional theory. <i>Journal of Hazardous Materials</i> , 2010 , 181, 969-74	12.8	18	
72	Oxidative Oligomerization of Phenolic Endocrine Disrupting Chemicals Mediated by Mn(III)-L Complexes and the Role of Phenoxyl Radicals in the Enhanced Removal: Experimental and Theoretical Studies. <i>Environmental Science & Environmental Science &</i>	10.3	18	
71	Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. <i>Chemical Engineering Journal</i> , 2019 , 359, 1056-1064	14.7	17	
70	Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate. <i>Journal of Hazardous Materials</i> , 2016 , 305, 219-228	12.8	16	
69	Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 6982-9	5.1	16	
68	Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: a combined experimental and theoretical study. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 102, 187-95	7	16	
67	Improved 3D-QSPR analysis of the predictive octanolair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers. <i>Atmospheric Environment</i> , 2013 , 77, 840-845	5.3	16	
66	Transformation of bromophenols by aqueous chlorination and exploration of main reaction mechanisms. <i>Chemosphere</i> , 2021 , 265, 129112	8.4	16	
65	Removal of the UV Filter Benzophenone-2 in Aqueous Solution by Ozonation: Kinetics, Intermediates, Pathways and Toxicity. <i>Ozone: Science and Engineering</i> , 2018 , 40, 122-132	2.4	15	
64	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. <i>Chemosphere</i> , 2016 , 144, 1754-62	8.4	15	
63	Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model development and its application in natural waters. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 104, 231-8	7	15	
62	The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2522-8	3.8	15	
61	Effects of common inorganic anions on the ozonation of polychlorinated diphenyl sulfides on silica gel: Kinetics, mechanisms, and theoretical calculations. <i>Water Research</i> , 2020 , 186, 116358	12.5	15	

60	Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI). <i>Journal of Hazardous Materials</i> , 2021 , 401, 123405	12.8	15
59	Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems: The impact of metal ions. <i>Environmental Pollution</i> , 2017 , 224, 649-657	9.3	14
58	Photoreactivity of hydroxylated multi-walled carbon nanotubes and its effects on the photodegradation of atenolol in water. <i>Chemosphere</i> , 2013 , 93, 1747-54	8.4	14
57	Treatment of diazo dye C.I. Reactive Black 5 in aqueous solution by combined process of interior microelectrolysis and ozonation. <i>Water Science and Technology</i> , 2013 , 67, 1880-5	2.2	14
56	Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120758	12.8	13
55	The mutual promotion of photolysis and laccase-catalysis on removal of dichlorophen from water under simulated sunlight irradiation. <i>Chemical Engineering Journal</i> , 2018 , 338, 392-400	14.7	13
54	The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to Daphnia magna. <i>Environmental Toxicology and Pharmacology</i> , 2014 , 38, 199-204	5.8	12
53	QSAR studies of bioconcentration factors of polychlorinated biphenyls (PCBs) using DFT, PCS and CoMFA. <i>Chemosphere</i> , 2014 , 114, 101-5	8.4	12
52	Experimental and QSPR study of sorption properties of polychlorinated diphenyl sulfides (PCDPSs) in Yangtze River plain soil. <i>Geoderma</i> , 2013 , 193-194, 140-148	6.7	12
51	Evaluation of HODE-15, FDE-15, CDE-15, and BDE-15 toxicity on adult and embryonic zebrafish (Danio rerio). <i>Environmental Science and Pollution Research</i> , 2014 , 21, 14047-57	5.1	11
50	DFT calculation on PBPXs: Their gas phase thermodynamic function and implication of Br substituted position. <i>Thermochimica Acta</i> , 2009 , 487, 49-53	2.9	10
49	Oxidation of benzophenone-3 in aqueous solution by potassium permanganate: kinetics, degradation products, reaction pathways, and toxicity assessment. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 31301-31311	5.1	10
48	Alumina-mediated photocatalytic degradation of hexachlorobenzene in aqueous system: Kinetics and mechanism. <i>Chemosphere</i> , 2020 , 257, 127256	8.4	9
47	Photodegradation of 17Eestradiol on silica gel and natural soil by UV treatment. <i>Environmental Pollution</i> , 2018 , 242, 1236-1244	9.3	9
46	Occurrence of polychlorinated diphenyl ethers in Nanjing section of the Yangtze River: level and distribution pattern. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 9224-32	5.1	8
45	Photodegradation of polychlorinated diphenyl sulfles (PCDPSs) under simulated solar light irradiation: Kinetics, mechanism, and density functional theory calculations. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122876	12.8	8
44	Theoretical study on hydrophilicity and thermodynamic properties of polyfluorinated dibenzofurans. <i>Chemosphere</i> , 2011 , 84, 296-304	8.4	8
43	Computational note on thermodynamic function of Polychlorinated Phenoxathiins (PCPTs). <i>Computational and Theoretical Chemistry</i> , 2008 , 857, 126-127		8

(2020-2013)

42	Synthesis of Diaryl Ethers by Cul-Catalyzed C-O Bond Formation via Ullman Coupling: Assessing the Reactivity of Aryl Halides. <i>Letters in Organic Chemistry</i> , 2013 , 10, 31-36	0.6	8
41	Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6138-49	5.1	7
40	The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 205, 111347	7	7
39	Theoretical study on the OH-initiated oxidation mechanism of polyfluorinated dibenzo-p-dioxins under the atmospheric conditions. <i>Chemosphere</i> , 2016 , 144, 2036-43	8.4	7
38	Tissue distribution, excretion, and the metabolic pathway of 2,2\$4,4\$5-penta-chlorinated diphenylsulfide (CDPS-99) in ICR mice. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2015 , 1001, 90-7	3.2	6
37	Enhanced oxidative degradation of decabromodiphenyl ether in soil by coupling Fenton-persulfate processes: Insights into degradation products and reaction mechanisms. <i>Science of the Total Environment</i> , 2020 , 737, 139777	10.2	6
36	Experimental and theoretical study on IR and NMR spectra of several tetrachlorinated diphenyl sulfides. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2011 , 81, 261-9	4.4	6
35	QSPR to aqueous solubility (lgSw) of alkyl(1-phenylsulfonyl) cycloalkane-carboxylates using MLSER model and ab initio. <i>Chemosphere</i> , 2006 , 62, 349-56	8.4	6
34	Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles. <i>Chemical Engineering Journal</i> , 2020 , 383, 123115	14.7	6
33	Toxicity of Arsenic to Photobacterium phosphoreum, Daphnia magna, and Danio rerio at Different pH Levels. <i>Clean - Soil, Air, Water</i> , 2016 , 44, 72-77	1.6	6
32	Preparation of nitrogen doped silica photocatalyst for enhanced photodegradation of polychlorinated biphenyls (PCB-209). <i>Chemical Engineering Journal</i> , 2021 , 425, 131682	14.7	6
31	Formation of hydroxylated derivatives and coupling products from the photochemical transformation of polyfluorinated dibenzo-p-dioxins (PFDDs) on silica surfaces. <i>Chemosphere</i> , 2019 , 231, 72-81	8.4	5
30	Antioxidant status and Na(+), K (+)-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 3408-18	5.1	5
29	Experimental investigation on the soil sorption properties and hydrophobicity of polymethoxylated, polyhydroxylated diphenyl ethers and methoxylated-, hydroxylated-polychlorinated diphenyl ethers. <i>Chemosphere</i> , 2015 , 134, 84-90	8.4	5
28	The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory. <i>Thermochimica Acta</i> , 2012 , 527, 99-111	2.9	5
27	Synthesis, experimental and theoretical investigation of molecular structure, IR, Raman spectra and 1H NMR analyses of 4,4?-dihydroxydiphenyl ether and 4,4?-oxybis(1-methoxybenzene). <i>Journal of Molecular Structure</i> , 2013 , 1035, 285-294	3.4	5
26	Photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of microplastics in aqueous solution. <i>Chemical Engineering Journal</i> , 2021 , 420, 129813	14.7	5
25	KMnO-mediated reactions for hexachlorophene in aqueous solutions: Direct oxidation, self-coupling, and cross-coupling. <i>Chemosphere</i> , 2020 , 259, 127422	8.4	4

24	Photodegradation of decabromodiphenyl ethane (DBDPE) adsorbed on silica gel in aqueous solution: Kinetics, products, and theoretical calculations. <i>Chemical Engineering Journal</i> , 2019 , 375, 1219	1 8 4.7	4
23	Occurrence of Polychlorodibenzothiophenes in Nanjing Section of the Yangtze River, China. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 453-60	3.2	4
22	New Findings of Ferrate(VI) Oxidation Mechanism from Its Degradation of Alkene Imidazole Ionic Liquids. <i>Environmental Science & Environmental Science</i>	10.3	4
21	Effects of in vivo exposure to polyfluorinated dibenzo-p-dioxins on organo-somatic indices and ethoxyresorufin-O-deethylase activity in mice (Mus musculus). <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2016 , 51, 150-153	2.3	3
20	The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study. <i>Chemosphere</i> , 2017 , 168, 10-17	8.4	3
19	Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products. <i>PLoS ONE</i> , 2015 , 10, e0128591	3.7	3
18	Ferrate(VI) oxidation of bisphenol E-Kinetics, removal performance, and dihydroxylation mechanism <i>Water Research</i> , 2021 , 210, 118025	12.5	3
17	Ferrate (VI)-mediated transformation of diethyl phthalate (DEP) in soil: Kinetics, degradation mechanisms and theoretical calculation. <i>Environmental Pollution</i> , 2021 , 290, 118053	9.3	3
16	Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1349-57	3.8	2
15	Synthesis and physicochemical properties of polyhydroxylated diphenyl ethers. <i>Thermochimica Acta</i> , 2013 , 568, 1-12	2.9	2
14	A Comprehensive Study on Infrared Spectra of 2-Hydroxyxanthone. Spectroscopy Letters, 2012, 45, 240-	245	2
13	Efficient photocatalytic degradation of PFOA in N-doped In2O3/simulated sunlight irradiation system and its mechanism. <i>Chemical Engineering Journal</i> , 2022 , 435, 134627	14.7	2
12	Hepatic oxidative status and metal homeostasis disturbance of 2-hydroxylated dioxin in ICR mice. <i>Environmental Toxicology and Pharmacology</i> , 2014 , 38, 881-90	5.8	1
11	Thermodynamic Properties for Polybrominated Dibenzothiophenes by Density Functional Theory. <i>Chinese Journal of Chemical Engineering</i> , 2009 , 17, 999-1008	3.2	1
10	Gas Phase Thermodynamic Properties of Polychlorinated Xanthones Predicted with DFT Method and Cl Substituted Position. <i>Chinese Journal of Chemical Engineering</i> , 2010 , 18, 462-471	3.2	1
9	Degradation of pentachlorophenol in peroxymonosulfate/heat system: Kinetics, mechanism, and theoretical calculations. <i>Chemical Engineering Journal</i> , 2022 , 434, 134736	14.7	1
8	Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: Kinetics, mechanism and toxicity evaluation <i>Chemosphere</i> , 2022 , 295, 133907	8.4	1
7	Experimental and quantum chemical study on the transformation behavior of bisphenol S by radical-driven persulfate oxidation. <i>Environmental Science: Water Research and Technology</i> ,	4.2	1

LIST OF PUBLICATIONS

6	Role of inorganic ions on the removal efficiencies, transformation and mineralization of tert-butylhydroquinone (TBHQ) oxidized by Fe(VI). <i>Chemical Engineering Journal</i> , 2022 , 429, 132169	14.7	1
5	Transformation of bisphenol AF by chlorination: kinetic study and product identification. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 62519-62529	5.1	O
4	Influence of anions on ozonation of bisphenol AF: Kinetics, reaction pathways, and toxicity assessment. <i>Chemosphere</i> , 2022 , 286, 131864	8.4	О
3	The environmental fate of biomass associated polybrominated diphenyl ethers <i>Chemosphere</i> , 2022 , 134397	8.4	O
2	Computational note on thermodynamic function of polybrominated biphenyls (PBBs). <i>Computational and Theoretical Chemistry</i> , 2008 , 854, 111-112		
1	Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water <i>Journal of Hazardous Materials</i> , 2022 , 436, 129091	12.8	