
Stewart A Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6059107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the blood–brain barrier in 22q11.2 deletion syndrome. Brain, 2021, 144, 1351-1360.	7.6	27
2	Association of Mitochondrial Biogenesis With Variable Penetrance of Schizophrenia. JAMA Psychiatry, 2021, 78, 911.	11.0	25
3	MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology, 2021, 17, e1009594.	3.2	11
4	Association of a functional Claudin-5 variant with schizophrenia in female patients with the 22q11.2 deletion syndrome. Schizophrenia Research, 2020, 215, 451-452.	2.0	12
5	Neuroinflammation and EIF2 Signaling Persist despite Antiretroviral Treatment in an hiPSC Tri-culture Model of HIV Infection. Stem Cell Reports, 2020, 14, 703-716.	4.8	42
6	Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells, 2020, 38, 1375-1386.	3.2	14
7	Modular, Circuit-Based Interventions Rescue Hippocampal-Dependent Social and Spatial Memory in a 22q11.2 Deletion Syndrome Mouse Model. Biological Psychiatry, 2020, 88, 710-718.	1.3	15
8	Protocol for Tri-culture of hiPSC-Derived Neurons, Astrocytes, and Microglia. STAR Protocols, 2020, 1, 100190.	1.2	6
9	Dosage Counts: Correcting Trisomy-21-Related Phenotypes in Human Organoids and Xenografts. Cell Stem Cell, 2019, 24, 835-836.	11.1	6
10	Casting a (Perineuronal) Net: Connecting Early Life Stress to Neuropathological Changes and Enhanced Anxiety in Adults. Biological Psychiatry, 2019, 85, 981-982.	1.3	1
11	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	7.0	57
12	Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia. Translational Psychiatry, 2019, 9, 302.	4.8	62
13	Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Experimental Neurology, 2018, 300, 121-134.	4.1	104
14	Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells. Brain Research, 2017, 1655, 277-282.	2.2	11
15	Loss of the neurodevelopmental gene Zswim6 alters striatal morphology and motor regulation. Neurobiology of Disease, 2017, 103, 174-183.	4.4	23
16	Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells. Stem Cell Reports, 2017, 8, 1135-1143.	4.8	6
17	The NANCI–Nkx2.1 gene duplex buffers Nkx2.1 expression to maintain lung development and homeostasis. Genes and Development, 2017, 31, 889-903.	5.9	49
18	Differentiation of Mouse Embryonic Stem Cells into Cortical Interneuron Precursors. Journal of Visualized Experiments, 2017, , .	0.3	0

STEWART A ANDERSON

#	Article	IF	CITATIONS
19	D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Frontiers in Cellular Neuroscience, 2016, 10, 34.	3.7	43
20	A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2016, 19, 1743-1749.	14.8	396
21	Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders. Cell Reports, 2016, 15, 229-237.	6.4	51
22	Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Reports, 2015, 13, 1090-1095.	6.4	78
23	Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor AŽÂ±4 subunit. Frontiers in Cellular Neuroscience, 2015, 9, 127.	3.7	12
24	Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development (Cambridge), 2015, 142, 1267-1278.	2.5	38
25	Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Research, 2015, 15, 522-529.	0.7	41
26	Development of Cortical Interneurons. Neuropsychopharmacology, 2015, 40, 16-23.	5.4	69
27	Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche. Cell Reports, 2014, 9, 2139-2151.	6.4	61
28	The chandelier cell, form and function. Current Opinion in Neurobiology, 2014, 26, 142-148.	4.2	63
29	Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity. Current Opinion in Neurobiology, 2014, 27, 151-157.	4.2	35
30	Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Molecular and Cellular Neurosciences, 2014, 61, 163-175.	2.2	55
31	Enhanced derivation of mouse ESC-derived cortical interneurons by expression of Nkx2.1. Stem Cell Research, 2013, 11, 647-656.	0.7	18
32	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
33	Directed Differentiation and Functional Maturation of Cortical Interneurons from Human Embryonic Stem Cells. Cell Stem Cell, 2013, 12, 559-572.	11.1	505
34	Spatial and Temporal Bias in the Mitotic Origins of Somatostatin- and Parvalbumin-Expressing Interneuron Subgroups and the Chandelier Subtype in the Medial Ganglionic Eminence. Cerebral Cortex, 2012, 22, 820-827.	2.9	142
35	Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Research, 2012, 8, 416-426.	0.7	41
36	A Targeted <i>NKX2.1</i> Human Embryonic Stem Cell Reporter Line Enables Identification of Human Basal Forebrain Derivatives. Stem Cells, 2011, 29, 462-473.	3.2	99

STEWART A ANDERSON

#	Article	IF	CITATIONS
37	Cell therapy for epilepsy using GABAergic neural progenitors. Epilepsia, 2010, 51, 94-94.	5.1	6
38	Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitors with Distinct Cortical Interneuron Fates. Neuron, 2010, 65, 328-340.	8.1	191
39	Fate mapping Nkx2.1â€lineage cells in the mouse telencephalon. Journal of Comparative Neurology, 2008, 506, 16-29.	1.6	477
40	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	10.2	1,314
41	Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors. Neuron, 2008, 59, 733-745.	8.1	236
42	A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Developmental Biology, 2008, 314, 127-136.	2.0	193
43	NKX2.1 specifies cortical interneuron fate by activating <i>Lhx6</i> . Development (Cambridge), 2008, 135, 1559-1567.	2.5	199
44	The origin and specification of cortical interneurons. Nature Reviews Neuroscience, 2006, 7, 687-696.	10.2	834
45	Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development (Cambridge), 2005, 132, 4987-4998.	2.5	157
46	Origins of Cortical Interneuron Subtypes. Journal of Neuroscience, 2004, 24, 2612-2622.	3.6	576
47	Distinct Origins of Neocortical Projection Neurons and Interneurons In Vivo. Cerebral Cortex, 2002, 12, 702-709.	2.9	163
48	Determination of Cell Fate within the Telencephalon. Chemical Senses, 2002, 27, 573-575.	2.0	6
49	Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development (Cambridge), 2002, 129, 245-252.	2.5	226
50	Origin and Molecular Specification of Striatal Interneurons. Journal of Neuroscience, 2000, 20, 6063-6076.	3.6	556
51	DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. Journal of Comparative Neurology, 1999, 414, 217-237.	1.6	269
52	DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. , 1999, 414, 217.		2