
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605880/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review.<br>Critical Reviews in Food Science and Nutrition, 2015, 55, 1137-1145.                                                                                | 10.3 | 143       |
| 2  | The Content of Polyphenolic Compounds in Cocoa Beans ( <i>Theobroma cacao</i> L.), Depending on<br>Variety, Growing Region, and Processing Operations: A Review. Critical Reviews in Food Science and<br>Nutrition, 2015, 55, 1176-1192.                     | 10.3 | 117       |
| 3  | Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. European Food Research and Technology, 2009, 228, 913-922.                                                             | 3.3  | 92        |
| 4  | New trends in quantification of acrylamide in food products. Talanta, 2011, 86, 23-34.                                                                                                                                                                       | 5.5  | 86        |
| 5  | Evaluation of sensory attributes of coffee brews from robusta coffee roasted under different conditions. European Food Research and Technology, 2006, 224, 159-165.                                                                                          | 3.3  | 76        |
| 6  | Canola/rapeseed protein – nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 3836-3856.                                                                                              | 10.3 | 72        |
| 7  | The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Research International, 2016, 89, 918-929.                                                                                              | 6.2  | 71        |
| 8  | Dark chocolates supplemented with Lactobacillus strains. European Food Research and Technology, 2007, 225, 33-42.                                                                                                                                            | 3.3  | 62        |
| 9  | Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MSn. Food Research International, 2019, 115, 135-149. | 6.2  | 62        |
| 10 | Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. European Food Research and Technology, 2003, 217, 157-163.                                             | 3.3  | 59        |
| 11 | Influence of roasting conditions on the biogenic amine content in cocoa beans of different<br>Theobroma cacao cultivars. Food Research International, 2014, 55, 1-10.                                                                                        | 6.2  | 59        |
| 12 | The effect of roasting method on headspace composition of robusta coffee bean aroma. European<br>Food Research and Technology, 2007, 225, 9-19.                                                                                                              | 3.3  | 48        |
| 13 | Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.). Food Research International, 2014, 61, 202-213.                                            | 6.2  | 48        |
| 14 | Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review.<br>Critical Reviews in Food Science and Nutrition, 2020, 60, 1947-1985.                                                                                        | 10.3 | 47        |
| 15 | Correlation Between the Stability of Chlorogenic Acids, Antioxidant Activity and Acrylamide Content<br>in Coffee Beans Roasted in Different Conditions. International Journal of Food Properties, 2015, 18,<br>290-302.                                      | 3.0  | 45        |
| 16 | Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight<br>Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups.<br>European Food Research and Technology, 2019, 245, 111-128.  | 3.3  | 44        |
| 17 | Influence of addition of green tea and green coffee extracts on the properties of fine yeast pastry fried products. Food Research International, 2013, 50, 149-160.                                                                                          | 6.2  | 43        |
| 18 | Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different<br>Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology,<br>2015, 241, 663-681.                                 | 3.3  | 39        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Antioxidant Properties of Cocoa Beans ( <i>Theobroma cacao</i> L.): Influence of Cultivar and Roasting Conditions. International Journal of Food Properties, 2016, 19, 1242-1258.                                                                                             | 3.0  | 39        |
| 20 | Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.<br>Carbohydrate Polymers, 2017, 172, 152-158.                                                                                                                                | 10.2 | 36        |
| 21 | Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. European<br>Journal of Lipid Science and Technology, 2012, 114, 1052-1061.                                                                                                       | 1.5  | 34        |
| 22 | Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. European Food Research and Technology, 2014, 238, 549-563.                                                                                            | 3.3  | 34        |
| 23 | The influence of arabinoxylans on the quality of grain industry products. European Food Research and Technology, 2016, 242, 295-303.                                                                                                                                          | 3.3  | 34        |
| 24 | Effects of various roasting conditions on acrylamide, acrolein, and polycyclic aromatic<br>hydrocarbons content in cocoa bean and the derived chocolates. Drying Technology, 2017, 35, 363-374.                                                                               | 3.1  | 32        |
| 25 | Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter<br>extracted from cocoa bean of Forastero variety cultivated in Togo. Food Research International, 2014,<br>63, 328-343.                                                     | 6.2  | 31        |
| 26 | Characterization of Amylose-lipid Complexes Derived from Different Wheat Varieties and their<br>Susceptibility to Enzymatic Hydrolysis. Food Science and Technology International, 2008, 14, 29-37.                                                                           | 2.2  | 30        |
| 27 | Effect of Enzymatic Hydrolysis of Wheat Starch on Amylose-Lipid Complexes Stability. Starch/Staerke, 2002, 54, 603-608.                                                                                                                                                       | 2.1  | 29        |
| 28 | Influence of Selected Parameters of Starch Gelatinization and Hydrolysis on Stability of Amylose-Lipid<br>Complexes. Starch/Staerke, 2005, 57, 325-331.                                                                                                                       | 2.1  | 28        |
| 29 | Properties of sucrose-free chocolates enriched with viable lactic acid bacteria. European Food<br>Research and Technology, 2005, 220, 358-362.                                                                                                                                | 3.3  | 27        |
| 30 | Composition and thermodynamic properties of starches from facultative wheat varieties. Food<br>Hydrocolloids, 2016, 54, 66-76.                                                                                                                                                | 10.7 | 27        |
| 31 | Effect of lecithin concentration on properties of sucrose-free chocolate masses sweetened with isomalt. European Food Research and Technology, 2005, 220, 131-135.                                                                                                            | 3.3  | 25        |
| 32 | The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. Journal of Food Science and Technology, 2018, 55, 4184-4196.                                                                                   | 2.8  | 24        |
| 33 | Effect of roasting conditions on the fat, tocopherol, and phytosterol content and antioxidant<br>capacity of the lipid fraction from cocoa beans of different <i>Theobroma cacao</i> L. cultivars.<br>European Journal of Lipid Science and Technology, 2014, 116, 1002-1014. | 1.5  | 23        |
| 34 | Tocopherols in cocoa butter obtained from cocoa bean roasted in different forms and under various process parameters. Food Research International, 2014, 63, 390-399.                                                                                                         | 6.2  | 20        |
| 35 | EFFECT OF GREEN AND ROASTED COFFEE ANTIOXIDANTS ON QUALITY AND SHELF LIFE OF COOKIES AND CHOCOLATES. Journal of Food Processing and Preservation, 2013, 37, 835-845.                                                                                                          | 2.0  | 19        |
| 36 | Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity<br>Model Systems. Foods, 2020, 9, 167.                                                                                                                                         | 4.3  | 16        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dependence of Thermodynamic Characteristics of Amylose-Lipid Complex Dissociation on a Variety of<br>Wheat. Starch/Staerke, 2005, 57, 378-383.                                    | 2.1 | 13        |
| 38 | The influence of non-starch polysaccharide on thermodynamic properties of starches from facultative wheat varieties. European Food Research and Technology, 2017, 243, 2243-2253. | 3.3 | 12        |
| 39 | Carbohydrate Compositions and Molecular Structure of Dextrins in Enzymatic High Maltose Syrups.<br>Starch/Staerke, 1990, 42, 437-444.                                             | 2.1 | 11        |
| 40 | Influence of Conditions of Maize Starch Enzymatic Hydrolysis on Physicochemical Properties of Glucose Syrups. Starch/Staerke, 2004, 56, 132-137.                                  | 2.1 | 11        |
| 41 | Heteropolysaccharide preparations from rye and wheat bran as sources of antioxidants. Journal of<br>Cereal Science, 2018, 81, 37-43.                                              | 3.7 | 11        |
| 42 | Changes of Carbohydrates and Molecular Structure of Dextrins During Enzymatic Hydrolysis of Starch with Maltogenase Participation. Starch/Staerke, 1990, 42, 432-436.             | 2.1 | 10        |
| 43 | Changes of Carbohydrates and Molecular Structure of Dextrins During Enzymatic Liquefaction of Starch. Starch/Staerke, 1992, 44, 398-401.                                          | 2.1 | 10        |
| 44 | Oxidative stability of lard and sunflower oil supplemented with coffee extracts under storage conditions. Grasas Y Aceites, 2011, 62, 155-161.                                    | 0.9 | 10        |
| 45 | Influence of variety and year of wheat cultivation on the chemical composition of starch and properties of glucose hydrolysates. Journal of Cereal Science, 2013, 57, 98-106.     | 3.7 | 10        |
| 46 | Properties of model systems of sunflower oil and green coffee extract after heat treatment and storage. LWT - Food Science and Technology, 2014, 59, 467-478.                     | 5.2 | 10        |
| 47 | Carbohydrate Compositions and Molecular Structure of Dextrins in Enzymatic High Conversion Starch Syrups. Starch/Staerke, 1989, 41, 431-435.                                      | 2.1 | 9         |
| 48 | Pepsin Digestibility and Antioxidant Activity of Egg White Protein in Model Systems with Green Coffee<br>Extract. International Journal of Food Properties, 2014, 17, 1529-1546.  | 3.0 | 9         |
| 49 | Stability of hydroxycinnamic acids and caffeine from green coffee extracts after heating in food model systems. European Food Research and Technology, 2013, 236, 969-978.        | 3.3 | 8         |
| 50 | Kombinierte enzymatische StÃ <b>¤</b> kehydrolyse. Starch/Staerke, 1989, 41, 266-270.                                                                                             | 2.1 | 5         |
| 51 | Utilization of Potato Pulp for Baking of Bread. Starch/Staerke, 1995, 47, 36-39.                                                                                                  | 2.1 | 5         |
| 52 | The Functionality of Wheat Starch. , 2018, , 325-352.                                                                                                                             |     | 5         |
| 53 | Changes of Carbohydrate Compositions During Enzymatic Hydrolysis of Starches of Various Origin.<br>Starch/Staerke, 1993, 45, 426-429.                                             | 2.1 | 4         |
| 54 | Die Wirkung von Glucoseisomerase auf Oligosaccharide in StÃ <b>r</b> kehydrolysaten. Starch/Staerke, 1979,<br>31, 345-347.                                                        | 2.1 | 2         |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Influence of the type of fat and air humidity on chosen properties of the lipid fraction in the process of baking shortbread pastries. Grasas Y Aceites, 2013, 64, 85-94. | 0.9 | 2         |
| 56 | Fluorimetric studies of the interactions of wheat puroindolines with polar lipids on the surface starch granules. Journal of Cereal Science, 2015, 66, 53-58.             | 3.7 | 2         |
| 57 | Molekulare Struktur und physikalischchemische Eigenschaften von lĶslichen StĤken und Dextrinen.<br>Starch/Staerke, 1989, 41, 289-293.                                     | 2.1 | 1         |
| 58 | Changes of Carbohydrate Composition During Enzymatic Hydrolysis of Starch with Mycolase<br>Participation. Starch/Staerke, 1996, 48, 263-266.                              | 2.1 | 1         |
| 59 | Optimisation of physical and chemical properties of wheat starch hydrolyzates. Progress in Biotechnology, 2000, 17, 201-208.                                              | 0.2 | 1         |
| 60 | Changes of polymorphism of lipid fractions of shortcrust pastries during storage. Journal of Thermal Analysis and Calorimetry, 2013, 113, 301-310.                        | 3.6 | 1         |