
## Sung-Kon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6058497/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Simple, green organic acid-based hydrometallurgy for waste-to-energy storage devices: Recovery of<br>NiMnCoC2O4 as an electrode material for pseudocapacitor from spent LiNiMnCoO2 batteries. Journal<br>of Hazardous Materials, 2022, 424, 127481. | 12.4 | 24        |
| 2  | Optical humidity sensors based on lead-free Cu-based perovskite nanomaterials. Nanoscale Advances, 2022, 4, 3309-3317.                                                                                                                              | 4.6  | 7         |
| 3  | Laser Scribing of Fluorinated Polyimide Films to Generate Microporous Structures for<br>High-Performance Micro-supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 208-214.                                                           | 5.1  | 39        |
| 4  | Integrated photo-rechargeable supercapacitors formed via electrode sharing. Organic Electronics, 2021, 89, 106050.                                                                                                                                  | 2.6  | 11        |
| 5  | Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer<br>Network Structure. Macromolecular Research, 2021, 29, 211-216.                                                                                      | 2.4  | 6         |
| 6  | Solar-Powered Supercapacitors Integrated with a Shared Electrode. ACS Applied Energy Materials, 2021, 4, 14014-14021.                                                                                                                               | 5.1  | 15        |
| 7  | Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.                                                                                                                            | 5.1  | 5         |
| 8  | Three-Dimensional Hierarchical Porous Carbons Derived from Betelnut Shells for Supercapacitor Electrodes. Materials, 2021, 14, 7793.                                                                                                                | 2.9  | 6         |
| 9  | Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based<br>Fibers and Their Application in High-Performance Supercapacitors. ACS Nano, 2020, 14, 632-639.                                                    | 14.6 | 44        |
| 10 | Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes. Materials, 2020, 13, 5255.                                                                                                                                        | 2.9  | 8         |
| 11 | Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger's base<br>polymers for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147146.                                                      | 6.1  | 12        |
| 12 | Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading<br>for high-performance energy storage. Journal of Industrial and Engineering Chemistry, 2020, 87,<br>173-179.                                   | 5.8  | 7         |
| 13 | Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes. Materials, 2020, 13, 729.                                                                                                                  | 2.9  | 13        |
| 14 | Facile fabrication of polyaniline films with hierarchical porous networks for enhanced electrochemical activity. Journal of Industrial and Engineering Chemistry, 2020, 86, 81-89.                                                                  | 5.8  | 4         |
| 15 | Monodisperse starburst carbon spheres-intercalated graphene nanohybrid papers for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2019, 853, 113533.                                                                             | 3.8  | 7         |
| 16 | Zwitterion Nondetergent Sulfobetaine-Modified SnO <sub>2</sub> as an Efficient Electron Transport<br>Layer for Inverted Organic Solar Cells. ACS Omega, 2019, 4, 19225-19237.                                                                       | 3.5  | 14        |
| 17 | A humidityâ€sensing composite microfiber based on moistureâ€induced swelling of an agarose polymer<br>matrix. Polymer Composites, 2019, 40, 3582-3587.                                                                                              | 4.6  | 13        |
| 18 | Enhancing device performance of inverted organic solar cells with SnO2/Cs2CO3 as dual electron transport layers. Organic Electronics, 2019, 68, 85-95.                                                                                              | 2.6  | 34        |

SUNG-KON KIM

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flexible sodium-ion battery anodes using indium sulfide-based nanohybrid paper electrodes. Applied<br>Surface Science, 2019, 467-468, 1040-1045.                                                                                                                             | 6.1  | 22        |
| 20 | Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes.<br>Journal of Industrial and Engineering Chemistry, 2019, 71, 345-350.                                                                                                      | 5.8  | 15        |
| 21 | Intrinsically microporous polymer-based hierarchical nanostructuring of<br>electrodes <i>via</i> nonsolvent-induced phase separation for high-performance supercapacitors.<br>Journal of Materials Chemistry A, 2018, 6, 8909-8915.                                          | 10.3 | 23        |
| 22 | Thin and Small N-Doped Carbon Boxes Obtained from Microporous Organic Networks and Their<br>Excellent Energy Storage Performance at High Current Densities in Coin Cell Supercapacitors. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 3525-3532.                   | 6.7  | 24        |
| 23 | High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.                                                                                                                  | 12.8 | 121       |
| 24 | Flexible Binderâ€Free CuS/Polydopamine oated Carbon Cloth for High Voltage Supercapacitors. Energy<br>Technology, 2018, 6, 1852-1858.                                                                                                                                        | 3.8  | 12        |
| 25 | Adhesive organic network films with a holey microstructure: useful platforms for the engineering of flexible energy devices. Journal of Materials Chemistry A, 2017, 5, 5696-5700.                                                                                           | 10.3 | 10        |
| 26 | Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates<br>for reinforced pore-filling membranes in fuel cells operating at high temperatures. Journal of<br>Membrane Science, 2017, 536, 76-85.                                      | 8.2  | 37        |
| 27 | Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for<br>high-temperature/low-humidity polymer electrolyte membrane fuel cells. Journal of Membrane<br>Science, 2017, 537, 11-21.                                                    | 8.2  | 47        |
| 28 | Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube–Agarose Gel Composite<br>Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 19925-19933.                                                                                                     | 8.0  | 34        |
| 29 | Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel<br>hybrid electrodes for high-performance supercapacitors. Applied Surface Science, 2017, 422, 316-320.                                                                       | 6.1  | 15        |
| 30 | Reduced Graphene Oxide/Lil Composite Lithium Ion Battery Cathodes. Nano Letters, 2017, 17, 6893-6899.                                                                                                                                                                        | 9.1  | 67        |
| 31 | Polybenzimidazole and Phosphonic Acid Groups-Functionalized Polyhedral Oligomeric Silsesquioxane<br>Composite Electrolyte for High Temperature Proton Exchange Membrane. Journal of Nanomaterials,<br>2016, 2016, 1-7.                                                       | 2.7  | 4         |
| 32 | Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional<br>Materials, 2016, 26, 903-910.                                                                                                                                             | 14.9 | 63        |
| 33 | Cross-Linked Sulfonated Poly(arylene ether sulfone) Membranes Formed by <i>in Situ</i> Casting and Click Reaction for Applications in Fuel Cells. Macromolecules, 2015, 48, 1104-1114.                                                                                       | 4.8  | 92        |
| 34 | Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing<br>cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low<br>humidity conditions. Journal of Power Sources, 2015, 293, 539-547. | 7.8  | 35        |
| 35 | Organic/inorganic composite membranes comprising of sulfonated Poly(arylene ether sulfone) and core–shell silica particles having acidic and basic polymer shells. Polymer, 2015, 71, 70-81.                                                                                 | 3.8  | 38        |
| 36 | Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.<br>ACS Nano, 2015, 9, 8569-8577.                                                                                                                                         | 14.6 | 113       |

SUNG-KON KIM

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion. Nanoscale, 2015, 7, 8864-8872.                                                                                                | 5.6  | 13        |
| 38 | Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized<br>Nanostructured Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 9128-9133.                                                    | 8.0  | 36        |
| 39 | Sulfonated poly(arylene ether sulfone) composite membranes having poly(2,5-benzimidazole)-grafted graphene oxide for fuel cell applications. Journal of Materials Chemistry A, 2015, 3, 20595-20606.                                         | 10.3 | 100       |
| 40 | Superior Pseudocapacitive Behavior of Confined Lignin Nanocrystals for Renewable Energy torage<br>Materials. ChemSusChem, 2014, 7, 1094-1101.                                                                                                | 6.8  | 132       |
| 41 | Binder-free, self-standing films of iron oxide nanoparticles deposited on ionic liquid functionalized carbon nanotubes for lithium-ion battery anodes. Materials Chemistry and Physics, 2014, 144, 396-401.                                  | 4.0  | 19        |
| 42 | Anomalous nanoinclusion effects of 2D MoS2 and WS2 nanosheets on the mechanical stiffness of polymer nanocomposites. Nanoscale, 2014, 6, 7430.                                                                                               | 5.6  | 104       |
| 43 | Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Advances, 2014, 4, 47827-47832.                                                                                         | 3.6  | 8         |
| 44 | Facile fabrication of graphene composite microwires via drying-induced size reduction of hydrogel filaments. RSC Advances, 2014, 4, 20927-20931.                                                                                             | 3.6  | 14        |
| 45 | Selective Wettingâ€Induced Microâ€Electrode Patterning for Flexible Microâ€Supercapacitors. Advanced<br>Materials, 2014, 26, 5108-5112.                                                                                                      | 21.0 | 146       |
| 46 | Healable properties of polymethacrylate derivatives having photo crosslinkable cinnamoyl side<br>groups with surface hardness control. Journal of Coatings Technology Research, 2014, 11, 455-459.                                           | 2.5  | 12        |
| 47 | Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer<br>structure consisting of poly(benzoxazine) and poly(benzimidazole). Journal of Power Sources, 2013,<br>226, 346-353.                          | 7.8  | 43        |
| 48 | Durable cross-linked copolymer membranes based on poly(benzoxazine) and poly(2,5-benzimidazole) for use in fuel cells at elevated temperatures. Journal of Materials Chemistry, 2012, 22, 7194.                                              | 6.7  | 54        |
| 49 | Poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] and<br>poly[6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for<br>fuel cells at elevated temperature. Macromolecular Research, 2012, 20, 1181-1190. | 2.4  | 18        |
| 50 | Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for<br>Lithium Ion Batteries. Macromolecules, 2012, 45, 9347-9356.                                                                              | 4.8  | 108       |
| 51 | Starâ€ <b>s</b> haped polymers having side chain poss groups for solid polymer electrolytes; synthesis, thermal behavior, dimensional stability, and ionic conductivity. Journal of Polymer Science Part A, 2012, 50, 3618-3627.             | 2.3  | 63        |
| 52 | Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated<br>Temperature. Macromolecules, 2012, 45, 1438-1446.                                                                                       | 4.8  | 122       |
| 53 | Preparation of MEA with the Polybenzimidazole Membrane for High Temperature PEM Fuel Cell.<br>Electrochemical and Solid-State Letters, 2011, 14, B38.                                                                                        | 2.2  | 16        |
| 54 | Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM<br>fuel cell applications. Journal of Membrane Science, 2011, 373, 80-88.                                                                 | 8.2  | 53        |

SUNG-KON KIM

| #  | Article                                                                                                                                                                                                            | IF         | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 55 | Preparation of Polybenzimidazole/Lithium Hydrazinium Sulfate Composite Membranes for<br>Highâ€Temperature Fuel Cell Applications. Macromolecular Chemistry and Physics, 2010, 211, 1322-1329.                      | 2.2        | 11        |
| 56 | Macromol. Chem. Phys. 12/2010. Macromolecular Chemistry and Physics, 2010, 211, n/a-n/a.                                                                                                                           | 2.2        | 0         |
| 57 | Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications.<br>Polymer, 2009, 50, 3495-3502.                                                                               | 3.8        | 81        |
| 58 | Copolymers of Poly(2,5â€benzimidazole) and Poly[2,2′â€( <i>p</i> â€phenylene)â€5,5′â€bibenzimidazole] f<br>Highâ€Temperature Fuel Cell Applications. Macromolecular Materials and Engineering, 2008, 293, 914-921. | For<br>3.6 | 22        |
| 59 | Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science, 2008, 323, 362-370.                                                   | 8.2        | 67        |
| 60 | Threeâ€dimensional mesostructured single crystalline Fe 3 O 4 for ultrafast electrochemical capacitor electrode with AC line filtering performance. International Journal of Energy Research, 0, , .               | 4.5        | 3         |