
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickel, Manganese, and Cobalt Dissolution from Ni-Rich NMC and Their Effects on NMC622-Graphite Cells. Journal of the Electrochemical Society, 2019, 166, A378-A389.	2.9	254
2	Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. Journal of Materials Chemistry A, 2016, 4, 18300-18305.	10.3	226
3	Activation of Oxygen on Gold/Alumina Catalysts: In Situ High-Energy-Resolution Fluorescence and Time-Resolved X-ray Spectroscopy. Angewandte Chemie - International Edition, 2006, 45, 4651-4654.	13.8	208
4	Identification of CO Adsorption Sites in Supported Pt Catalysts Using High-Energy-Resolution Fluorescence Detection X-ray Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 16162-16164.	2.6	163
5	Influence of the Generation of Mesopores on the Hydroisomerization Activity and Selectivity of n-Hexane over Pt/Mordenite. Journal of Catalysis, 2000, 190, 209-214.	6.2	123
6	Co ^{III} –Carbene Radical Approach to Substituted 1 <i>H</i> -Indenes. Journal of the American Chemical Society, 2016, 138, 8968-8975.	13.7	117
7	Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2016, 163, A930-A939.	2.9	113
8	Modern X-ray spectroscopy: XAS and XES in the laboratory. Coordination Chemistry Reviews, 2020, 423, 213466.	18.8	112
9	An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption. Journal of Catalysis, 2001, 202, 129-140.	6.2	106
10	Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2015, 162, A1146-A1155.	2.9	103
11	Shape-Selective Synthesis of Palladium Nanoparticles Stabilized by Highly Branched Amphiphilic Polymers. Advanced Functional Materials, 2004, 14, 999-1004.	14.9	81
12	Effect of Location and Distribution of Al Sites in ZSM-5 on the Formation of Cu-Oxo Clusters Active for Direct Conversion of Methane to Methanol. Topics in Catalysis, 2016, 59, 1554-1563.	2.8	71
13	Lanthanide Metalâ€Organic Frameworks as Ziegler–Natta Catalysts for the Selective Polymerization of Isoprene. Macromolecular Chemistry and Physics, 2009, 210, 1923-1932.	2.2	67
14	Multitechnique Approach to Reveal the Mechanism of Copper(II)-Catalyzed Arylation Reactions. Organometallics, 2010, 29, 3085-3097.	2.3	64
15	Cr K-Edge XANES Spectroscopy: Ligand and Oxidation State Dependence — What is Oxidation State?. AlP Conference Proceedings, 2007, , .	0.4	62
16	Ligand Redox Noninnocence in [Co ^{III} (TAML)] ^{0/–} Complexes Affects Nitrene Formation. Journal of the American Chemical Society, 2020, 142, 552-563.	13.7	62
17	Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes. Journal of Physical Chemistry B, 2013, 117, 7381-7387.	2.6	48
18	An <i>in Situ</i> Study of Bond Strains in 1 nm Pt Catalysts and Their Sensitivities to Cluster–Support and Cluster–Adsorbate Interactions. Journal of Physical Chemistry C, 2013, 117, 23286-23294.	3.1	47

#	Article	IF	CITATIONS
19	Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex. Journal of the American Chemical Society, 2017, 139, 8718-8724.	13.7	47
20	Base-free anaerobic Cu(II) catalysed aryl-nitrogen bond formations. Tetrahedron Letters, 2004, 45, 7659-7662.	1.4	46
21	Chemical Nonâ€Innocence of an Aliphatic PNP Pincer Ligand. Chemistry - A European Journal, 2017, 23, 33-37.	3.3	43
22	Probing the Molecular Orbitals and Charge Redistribution in Organometallic (PP)Pd(XX) Complexes. A Pd K-Edge XANES Study. Journal of the American Chemical Society, 2005, 127, 777-789.	13.7	39
23	Local structure of reaction intermediates probed by time-resolved x-ray absorption near edge structure spectroscopy. Journal of Chemical Physics, 2009, 130, 174508.	3.0	38
24	Identification of Catalyst Structure during the Hydrogen Oxidation Reaction in an Operating PEM Fuel Cell. ACS Catalysis, 2016, 6, 7326-7334.	11.2	34
25	Insights in the mechanism of selective olefin oligomerisation catalysis using stopped-flow freeze-quench techniques: A Mo K-edge QEXAFS study. Journal of Catalysis, 2011, 284, 247-258.	6.2	32
26	Cu K-Edge EXAFS Characterisation of Copper(I) Arenethiolate Complexes in both the Solid and Liquid State: Detection of CuCu Coordination. Chemistry - A European Journal, 2002, 8, 5667-5678.	3.3	31
27	Electronically Asynchronous Transition States for C–N Bond Formation by Electrophilic [Co^{III}(TAML)] -Nitrene Radical Complexes Involving Substrate-to-Ligand Single-Electron Transfer and a Cobalt-Centered Spin Shuttle. ACS Catalysis, 2020, 10, 7449-7463.	11.2	30
28	In situ XAS with high-energy resolution: The changing structure of platinum during the oxidation of carbon monoxide. Catalysis Today, 2009, 145, 300-306.	4.4	29
29	<i>In Situ</i> EXAFS Characterization of Nanoparticulate Catalysts. MRS Bulletin, 2007, 32, 1038-1043.	3.5	27
30	Design of Ru–Zeolites for Hydrogenâ€Free Production of Conjugated Linoleic Acids. ChemSusChem, 2011, 4, 757-767.	6.8	27
31	Structure–performance relationships of Rh and RhPd alloy supported catalysts using combined EDE/DRIFTS/MS. Faraday Discussions, 2008, 138, 287-300.	3.2	26
32	Structural Characterization of Alumina‣upported Rh Catalysts: Effects of Ceriation and Zirconiation by using Metal–Organic Precursors. ChemPhysChem, 2013, 14, 3606-3617.	2.1	25
33	Activation of [CrCl ₃ {R-SN(H)S-R}] Catalysts for Selective Trimerization of Ethene: A Freeze-Quench Cr K-Edge XAFS Study. ACS Catalysis, 2014, 4, 4201-4204.	11.2	25
34	The Importance of Chemical Reactions in the Charging Process of Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A1288-A1296.	2.9	22
35	Efficient synthesis of coumarin-based tetra and pentacyclic rings using phospha-palladacycles. RSC Advances, 2013, 3, 20905.	3.6	21
36	Activation of [CrCl ₃ {PPh ₂ N(ⁱ Pr)PPh ₂ }] for the selective oligomerisation of ethene: a Cr K-edge XAFS study. Catalysis Science and Technology, 2016, 6, 6237-6246.	4.1	19

#	Article	IF	CITATIONS
37	AXAFS as a Probe of Charge Redistribution within Organometallic Complexes. Journal of the American Chemical Society, 2004, 126, 4090-4091.	13.7	18
38	Structureâ^'Performance Relations in Homogeneous Pd Catalysis by In Situ EXAFS Spectroscopy. Journal of the American Chemical Society, 2002, 124, 14814-14815.	13.7	17
39	Effects of Adsorbate Coverage and Bondâ€Length Disorder on the dâ€Band Center of Carbonâ€6upported Pt Catalysts. ChemPhysChem, 2014, 15, 1569-1572.	2.1	17
40	Spectroscopic Investigation of the Activation of a Chromium-Pyrrolyl Ethene Trimerization Catalyst. ACS Catalysis, 2019, 9, 1197-1210.	11.2	16
41	Interaction of small gas phase molecules with alumina supported rhodium nanoparticles: anin situspectroscopic study. Journal of Physics Condensed Matter, 2008, 20, 184020.	1.8	15
42	Molybdenum Oxide Supported on Ti ₃ AlC ₂ is an Active Reverse Water–Gas Shift Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4957-4966.	6.7	15
43	Timeâ€Resolved, In Situ DRIFTS/EDE/MS Studies on Alumina‣upported Rhodium Catalysts: Effects of Ceriation and Zirconiation on Rhodium–CO Interactions. ChemPhysChem, 2014, 15, 3049-3059.	2.1	14
44	Catalysis seen in action. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20130152.	3.4	14
45	Titanium•atalyzed esterification reactions: beyond Lewis acidity. ChemCatChem, 2020, 12, 5229-5235.	3.7	14
46	Pump—probe XAS investigation of the triplet state of an Ir photosensitizer with chromenopyridinone ligands. Photochemical and Photobiological Sciences, 2018, 17, 896-902.	2.9	13
47	Cationic Copper Iminophosphorane Complexes as CuAAC Catalysts: A Mechanistic Study. Organometallics, 2020, 39, 3480-3489.	2.3	13
48	Reversible NOx storage over Ru/Na–Y zeolite. Chemical Science, 2010, 1, 763.	7.4	12
49	Linear, Trinuclear Cobalt Complexes with <i>o</i> â€Phenyleneâ€bisâ€Silylamido Ligands. Chemistry - A European Journal, 2017, 23, 6504-6508.	3.3	12
50	Linear Cu ^I ₂ Pd ⁰ , Cu ^I Pd ⁰ ₂ , and Ag ^I ₂ Pd ⁰ Metal Chains Supported by Rigid <i>N</i> , <i>N</i> , A European Journal, 2018, 24, 8787-8796.	3.3	11
51	Spectroscopic and theoretical investigation of the [Fe2(bdt)(CO)6] hydrogenase mimic and some catalyst intermediates. Physical Chemistry Chemical Physics, 2019, 21, 14638-14645.	2.8	11
52	Role of the ligand and activator in selective Cr–PNP ethene tri- and tetramerization catalysts – a spectroscopic study. Catalysis Science and Technology, 2020, 10, 6212-6222.	4.1	11
53	Atomic XAFS as a probe of electron transfer within organometallic complexes: Data analysis and theoretical calculations. Physical Chemistry Chemical Physics, 2004, 6, 4397.	2.8	10
54	High Throughput In Situ XAFS Screening of Catalysts. AIP Conference Proceedings, 2007, , .	0.4	10

#	Article	IF	CITATIONS
55	Insights into the Interconnection of the Electrodes and Electrolyte Species in Lithium–Sulfur Batteries Using Spatially Resolved <i>Operando</i> X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping. Journal of Physical Chemistry C, 2018, 122, 5303-5316.	3.1	10
56	Examination of Protonation-Induced Dinitrogen Splitting by <i>in Situ</i> EXAFS Spectroscopy. Inorganic Chemistry, 2020, 59, 14367-14375.	4.0	10
57	Intracluster Atomic and Electronic Structural Heterogeneities in Supported Nanoscale Metal Catalysts. Journal of Physical Chemistry C, 2015, 119, 25615-25627.	3.1	9
58	[FeFe]-Hydrogenase Mimic Employing κ2-C,N-Pyridine Bridgehead Catalyzes Proton Reduction at Mild Overpotential. European Journal of Inorganic Chemistry, 2019, 2019, 2510-2517.	2.0	8
59	Investigating the Active Species in a [(Râ€SN(H)Sâ€R)CrCl ₃] Ethene Trimerization System: Mononuclear or Dinuclear?. ChemCatChem, 2020, 12, 881-892.	3.7	7
60	X-ray Nanospectroscopy Reveals Binary Defect Populations in Sub-micrometric ZnO Crystallites. Journal of Physical Chemistry C, 2020, 124, 12596-12605.	3.1	6
61	Mechanistic elucidation of monoalkyltin(<scp>iv</scp>)-catalyzed esterification. Catalysis Science and Technology, 2021, 11, 3326-3332.	4.1	6
62	A linear rod-packing coordination polymer constructed from a non-linear dicarboxylate and the [Zn4O]6+ cluster. Journal of Coordination Chemistry, 2013, 66, 3058-3062.	2.2	5
63	Time-resolved, <i>in situ</i> DRIFTS/EDE/MS studies on alumina supported Rh catalysts: effects of ceriation on the Rh catalysts in the process of CO oxidation. Journal of Lithic Studies, 2017, 3, 13-23.	0.5	5
64	Hard X-Ray Photon-In-Photon-Out Spectroscopy with Lifetime Resolution — of XAS, XES, RIXSS and HERFD. AIP Conference Proceedings, 2007, , .	0.4	4
65	Manganese containing copper aluminate catalysts: Genesis of structures and active sites for hydrogenation of aldehydes. Journal of Catalysis, 2021, 395, 80-90.	6.2	4
66	In Situ Structure-Function Studies of Oxide Supported Rhodium Catalysts by Combined Energy Dispersive XAFS and DRIFTS Spectroscopies. AIP Conference Proceedings, 2007, , .	0.4	3
67	High-Throughput Structure/Function Screening of Materials and Catalysts with Multiple Spectroscopic Techniques. AIP Conference Proceedings, 2007, , .	0.4	3
68	Electronic characterization of redox (non)-innocent Fe ₂ S ₂ reference systems: a multi K-edge X-ray spectroscopic study. RSC Advances, 2020, 10, 729-738.	3.6	3
69	The Use of Virtual Reality in A Chemistry Lab and Its Impact on Students' Self-Efficacy, Interest, Self-Concept and Laboratory Anxiety. Eurasia Journal of Mathematics, Science and Technology Education, 2022, 18, em2090.	1.3	3
70	Linear Cu ^I ₂ Pd ⁰ , Cu ^I Pd ⁰ ₂ , and Ag ^I ₂ Pd ⁰ Metal Chains Supported by Rigid <i>N</i> , <i>N</i> ′â€Diphosphanyl Nâ€Heterocyclic Carbene Ligands and Metallophilic Interactions. Chemistry - A European Journal, 2018, 24, 8697-8697.	3.3	2
71	The benefit of the European User Community from transnational access to national radiation facilities. Journal of Synchrotron Radiation, 2014, 21, 638-639.	2.4	2
72	Transition Metal Dissolution in State-of-the-Art and Next Generation Li-Ion Batteries Studied By Spatially Resolved Operando X-Ray Absorption Spectroscopy. ECS Meeting Abstracts, 2018, , .	0.0	2

#	Article	IF	CITATIONS
73	High-Throughput Synthesis and Characterization of BiMoVOX Materials. AIP Conference Proceedings, 2007, , .	0.4	1
74	Kinetic studies on Lewis acidic metal polyesterification catalysts – hydrolytic degradation is a key factor for catalytic performance. Catalysis Science and Technology, 2022, 12, 2056-2060.	4.1	1
75	Application of In-Situ High Energy-Resolution Fluorescence Detection and Time-Resolved X-Ray Spectroscopy: Catalytic Activation of Oxygen over Supported Gold Catalysts. AIP Conference Proceedings, 2007, , .	0.4	0
76	Where are those promising solid-state batteries?. Europhysics News, 2021, 52, 28-31.	0.3	0