David Alejandro Pelta Mochcovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Critical Analysis of a Tourist Trip Design Problem with Time-Dependent Recommendation Factors and Waiting Times. Electronics (Switzerland), 2022, 11, 357.	3.1	6
2	An approach to identify solutions of interest from multi and many-objective optimization problems. Neural Computing and Applications, 2021, 33, 2471-2481.	5.6	8
3	A Metaheuristic Based Approach for the Customer-Centric Perishable Food Distribution Problem. Electronics (Switzerland), 2021, 10, 2018.	3.1	4
4	The Role of Metaheuristics as Solutions Generators. Symmetry, 2021, 13, 2034.	2.2	6
5	The Role of the Context in Decision and Optimization Problems. Studies in Fuzziness and Soft Computing, 2021, , 75-84.	0.8	1
6	Inteligencia artificial y problemas de decisión: la necesidad de un contexto ético. Suma De Negocios, 2021, 12, 104-114.	0.2	0
7	A hybrid system for optimizing enrichment and gadolinia distributions in BWR fuel lattices. Progress in Nuclear Energy, 2020, 119, 103172.	2.9	0
8	On the Impact of Fuzzy Constraints in the Variable Size and Cost Bin Packing Problem. Communications in Computer and Information Science, 2020, , 230-240.	0.5	0
9	Planning Wi-Fi Access Points Activation in Havana City: A Proposal and Preliminary Results. Communications in Computer and Information Science, 2020, , 689-698.	0.5	0
10	Towards adaptive maps. International Journal of Intelligent Systems, 2019, 34, 400-414.	5.7	2
11	Activating accessible pedestrian signals by voice using keyword spotting systems. , 2019, , .		3
12	PRoA: An intelligent multi-criteria Personalized Route Assistant. Engineering Applications of Artificial Intelligence, 2018, 72, 162-169.	8.1	11
13	Rank Reversal and the VIKOR Method: An Empirical Evaluation. International Journal of Information Technology and Decision Making, 2018, 17, 513-525.	3.9	22
14	Methodology for integrated fuel lattice and fuel load optimization using population-based metaheuristics and decision trees. Progress in Nuclear Energy, 2018, 104, 264-270.	2.9	6
15	A New Approach for Solving Personalized Routing Problems with Fuzzy Constraints. , 2018, , .		2
16	Approximation Models in Robust Optimization Over Time - An Experimental Study. , 2018, , .		4
17	Placing Wi-Fi Hotspots in Havana with locations availability based on fuzzy constraints. , 2018, , .		1
18	A Proposal for Adaptive Maps. Communications in Computer and Information Science, 2018, , 657-666.	0.5	1

#	Article	IF	CITATIONS
19	Context-Based Decision and Optimization: The Case of the Maximal Coverage Location Problem. Communications in Computer and Information Science, 2018, , 330-341.	0.5	0
20	FuzzyCovering: A Spatial Decision Support System for Solving Fuzzy Covering Location Problems. Studies in Fuzziness and Soft Computing, 2018, , 49-66.	0.8	0
21	Crisp vs. Fuzzy Data in Multicriteria Decision Making: The Case of the VIKOR Method. Advances in Intelligent Systems and Computing, 2018, , 455-465.	0.6	2
22	Fuzzy Information and Contexts for Designing Automatic Decision-Making Systems. Lecture Notes in Computer Science, 2018, , 174-183.	1.3	0
23	Fuzzy Multicriteria Decision-Making Methods: A Comparative Analysis. International Journal of Intelligent Systems, 2017, 32, 722-738.	5.7	21
24	An algorithm portfolio for the dynamic maximal covering location problem. Memetic Computing, 2017, 9, 141-151.	4.0	13
25	Personalized route problem with fuzzy constraints. , 2017, , .		1
26	Fuzzy maximal covering location models for fighting dengue. , 2016, , .		5
27	Dynamic optimization with restricted and unrestricted moves between changes: A study on the dynamic maximal covering location problem. , 2016, , .		0
28	Prediction of 3D nuclear reactor's operational parameters from 2D fuel lattice design information: A data mining approach. Progress in Nuclear Energy, 2016, 91, 97-106.	2.9	4
29	A comparative analysis of multi-criteria decision-making methods. Progress in Artificial Intelligence, 2016, 5, 315-322.	2.4	90
30	Fuzzy Models and Resolution Methods for Covering Location Problems: an Annotated Bibliography. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2016, 24, 561-591.	1.9	14
31	An approach for solving maximal covering location problems with fuzzy constraints. International Journal of Computational Intelligence Systems, 2016, 9, 734.	2.7	11
32	Self-adaptation in dynamic environments - a survey and open issues. International Journal of Bio-Inspired Computation, 2016, 8, 1.	0.9	18
33	Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction. Expert Systems With Applications, 2016, 55, 441-451.	7.6	163
34	A repeated imitation model with dependence between stages: Decision strategies and rewards. International Journal of Applied Mathematics and Computer Science, 2015, 25, 617-630.	1.5	0
35	Cluster-based comparison of the peptide mass fingerprint obtained by MALDI-TOF mass spectrometry. A case study: long-term stability of rituximab. Analyst, The, 2015, 140, 1717-1730.	3.5	4
36	Nuclear fuel lattice performance analysis by data mining techniques. Annals of Nuclear Energy, 2015, 80, 236-247.	1.8	6

#	Article	IF	CITATIONS
37	Algorithm portfolio based scheme for dynamic optimization problems. International Journal of Computational Intelligence Systems, 2015, 8, 667-689.	2.7	13
38	Adaptation Schemes and Dynamic Optimization Problems: A Basic Study on the Adaptive Hill Climbing Memetic Algorithm. Studies in Computational Intelligence, 2014, , 85-97.	0.9	3
39	Application of data mining methods for classification and prediction of olive oil blends with other vegetable oils. Analytical and Bioanalytical Chemistry, 2014, 406, 2591-2601.	3.7	20
40	Analyzing the Robustness of Decision Strategies in Multiagent Decision Making. Group Decision and Negotiation, 2014, 23, 1403-1416.	3.3	2
41	Self-adaptive, multipopulation differential evolution in dynamic environments. Soft Computing, 2013, 17, 1861-1881.	3.6	31
42	Forgetting as a way to avoid deception in a repeated imitation game. Autonomous Agents and Multi-Agent Systems, 2013, 27, 329-354.	2.1	3
43	SRCS: A Technique for Comparing Multiple Algorithms under Several Factors in Dynamic Optimization Problems. Studies in Computational Intelligence, 2013, , 61-77.	0.9	5
44	Attractor Metabolic Networks. PLoS ONE, 2013, 8, e58284.	2.5	31
45	An algorithm comparison for dynamic optimization problems. Applied Soft Computing Journal, 2012, 12, 3176-3192.	7.2	19
46	Theoretical analysis of expected payoff in an adversarial domain. Information Sciences, 2012, 186, 93-104.	6.9	5
47	Exploiting Adversarial Uncertainty in Robotic Patrolling: A Simulation-Based Analysis. Communications in Computer and Information Science, 2012, , 529-538.	0.5	3
48	Expected payoff analysis of dynamic mixed strategies in an adversarial domain. , 2011, , .		4
49	Ant Colony Optimization for Automatic Design of Strategies in an Adversarial Model. Studies in Computational Intelligence, 2011, , 1-19.	0.9	0
50	Sensitivity analysis in the scenario method: A multi-objective approach. , 2011, , .		5
51	Solving multiple instances at once: the role of search and adaptation. Soft Computing, 2011, 15, 233-250.	3.6	0
52	Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing, 2011, 15, 1427-1448.	3.6	241
53	A fuzzy-rule-based driving architecture for non-player characters in a car racing game. Soft Computing, 2011, 15, 1617-1629.	3.6	6
54	Efficient multi-swarm PSO algorithms for dynamic environments. Memetic Computing, 2011, 3, 163-174.	4.0	35

#	Article	IF	CITATIONS
55	An Adaptive Multiagent Strategy for Solving Combinatorial Dynamic Optimization Problems. Studies in Computational Intelligence, 2011, , 41-55.	0.9	4
56	The 2009 Simulated Car Racing Championship. IEEE Transactions on Games, 2010, 2, 131-147.	1.4	70
57	A software modeling approach for the design and analysis of cooperative optimization systems. Software - Practice and Experience, 2010, 40, 811-823.	3.6	0
58	Evolutionary design and statistical assessment of strategies in an adversarial domain. , 2010, , .		5
59	Using heuristic rules to enhance a multiswarm PSO for dynamic environments. , 2010, , .		13
60	An Analysis of Particle Properties on a Multi-swarm PSO for Dynamic Optimization Problems. Lecture Notes in Computer Science, 2010, , 32-41.	1.3	11
61	Decision Strategies in Mediated Multiagent Negotiations: An Optimization Approach. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40, 635-640.	2.9	32
62	Cooperation rules in a trajectory-based centralised cooperative strategy for Dynamic Optimisation Problems. , 2010, , .		3
63	Improvement Strategies for Multi-swarm PSO in Dynamic Environments. Studies in Computational Intelligence, 2010, , 371-383.	0.9	10
64	Nature-inspired cooperative strategies for optimization. International Journal of Intelligent Systems, 2009, 24, 723-725.	5.7	13
65	A framework for developing optimization-based decision support systems. Expert Systems With Applications, 2009, 36, 4581-4588.	7.6	12
66	Controlling Particle Trajectories in a Multi-swarm Approach for Dynamic Optimization Problems. Lecture Notes in Computer Science, 2009, , 285-294.	1.3	9
67	Solving Bioinformatics Problems by Soft Computing Techniques: Protein Structure Comparison as Example. Studies in Computational Intelligence, 2009, , 123-136.	0.9	0
68	A simple and fast heuristic for protein structure comparison. BMC Bioinformatics, 2008, 9, 161.	2.6	40
69	On Using Fuzzy Contact Maps for Protein Structure Comparison. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	3
70	A Critical View of the Evolutionary Design of Self-assembling Systems. Lecture Notes in Computer Science, 2006, , 179-188.	1.3	10
71	Multimeme Algorithms Using Fuzzy Logic Based Memes For Protein Structure Prediction. , 2005, , 49-64.		6
72	Application of fuzzy optimization to diet problems in Argentinean farms. European Journal of Operational Research, 2004, 158, 218-228.	5.7	36

DAVID ALEJANDRO PELTA

#	Article	IF	CITATIONS
73	Fuzzy Memes in Multimeme Algorithms: a Fuzzy-Evolutionary Hybrid. Studies in Fuzziness and Soft Computing, 2003, , 49-66.	0.8	9
74	Introducing SACRA: A Decision Support System for the Construction of Cattle Diets. Studies in Fuzziness and Soft Computing, 2003, , 391-401.	0.8	4
75	Pattern Search in Molecules with FANS: Preliminary Results. Lecture Notes in Computer Science, 2003, , 11-21.	1.3	0
76	Applying a fuzzy sets-based heuristic to the protein structure prediction problem. International Journal of Intelligent Systems, 2002, 17, 629-643.	5.7	22
77	A Fuzzy Valuation-Based Local Search Framework for Combinatorial Problems. Fuzzy Optimization and Decision Making, 2002, 1, 177-193.	5.5	18