
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605771/publications.pdf Version: 2024-02-01

LOSÃO LUIS TOPERO

#	Article	IF	CITATIONS
1	The severity of smouldering peat fires and damage to the forest soil. Catena, 2008, 74, 304-309.	5.0	262
2	Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combustion and Flame, 2006, 146, 95-108.	5.2	200
3	How did the WTC towers collapse: a new theory. Fire Safety Journal, 2003, 38, 501-533.	3.1	158
4	Forward smolder of polyurethane foam in a forced air flow. Combustion and Flame, 1996, 106, 89-109.	5.2	114
5	Opposed Forced Flow Smoldering of Polyurethane Foam. Combustion Science and Technology, 1993, 91, 95-117.	2.3	101
6	Upward flame spread on a vertically oriented fuel surface: The effect of finite width. Proceedings of the Combustion Institute, 2007, 31, 2607-2615.	3.9	95
7	Small-scale forward smouldering experiments for remediation of coal tar in inert media. Proceedings of the Combustion Institute, 2009, 32, 1957-1964.	3.9	95
8	Behaviour of concrete structures in fire. Thermal Science, 2007, 11, 37-52.	1.1	93
9	Self-Sustaining Smoldering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media. Environmental Science & Technology, 2009, 43, 5871-5877.	10.0	89
10	Estimation of a total mass transfer number from the standoff distance of a spreading flame. Combustion Science and Technology, 2002, 174, 187-203.	2.3	88
11	FireGrid: An e-infrastructure for next-generation emergency response support. Journal of Parallel and Distributed Computing, 2010, 70, 1128-1141.	4.1	86
12	Processes defining smouldering combustion: Integrated review and synthesis. Progress in Energy and Combustion Science, 2020, 81, 100869.	31.2	86
13	Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings. Fire Safety Journal, 1995, 24, 167-187.	3.1	85
14	Mass flux of combustible solids at piloted ignition. Proceedings of the Combustion Institute, 2007, 31, 2653-2660.	3.9	84
15	Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One. Fire Safety Journal, 2009, 44, 590-602.	3.1	84
16	Kinetic and fuel property effects on forward smoldering combustion. Combustion and Flame, 2000, 120, 346-358.	5.2	80
17	Smouldering combustion as a treatment technology for faeces: Exploring the parameter space. Fuel, 2015, 147, 108-116.	6.4	77
18	BRE large compartment fire tests—Characterising post-flashover fires for model validation. Fire Safety Journal, 2007, 42, 548-567.	3.1	75

#	Article	IF	CITATIONS
19	Self-Sustaining Smoldering Combustion for NAPL Remediation: Laboratory Evaluation of Process Sensitivity to Key Parameters. Environmental Science & Technology, 2011, 45, 2980-2986.	10.0	72
20	A calorimetric study of wildland fuels. Experimental Thermal and Fluid Science, 2008, 32, 1381-1389.	2.7	71
21	Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Safety Journal, 2010, 45, 249-261.	3.1	71
22	Natural convection smolder of polyurethane foam, upward propagation. Fire Safety Journal, 1995, 24, 35-52.	3.1	62
23	Characterisation of Dalmarnock fire Test One. Experimental Thermal and Fluid Science, 2008, 32, 1334-1343.	2.7	61
24	Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR. Environmental Science & Technology, 2015, 49, 14334-14342.	10.0	61
25	Large-scale pool fires. Thermal Science, 2007, 11, 101-118.	1.1	60
26	Oxidizer Flow Effects on the Flammability of Solid Combustibles. Combustion Science and Technology, 2001, 164, 253-278.	2.3	59
27	SOOTING BEHAVIOR DYNAMICS OF A NON-BUOYANT LAMINAR DIFFUSION FLAME. Combustion Science and Technology, 2007, 179, 3-19.	2.3	58
28	Sensor Assisted Fire Fighting. Fire Technology, 2010, 46, 719-741.	3.0	58
29	Flame spread: Effects of microgravity and scale. Combustion and Flame, 2019, 199, 168-182.	5.2	58
30	Determination of the main parameters influencing forest fuel combustion dynamics. Fire Safety Journal, 2011, 46, 27-33.	3.1	57
31	Volumetric scale-up of smouldering remediation of contaminated materials. Journal of Hazardous Materials, 2014, 268, 51-60.	12.4	57
32	Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels. Fire Safety Journal, 2009, 44, 933-940.	3.1	56
33	Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combustion and Flame, 2008, 152, 451-460.	5.2	55
34	Fire Safety Design for Tall Buildings. Procedia Engineering, 2013, 62, 169-181.	1.2	55
35	Forced forward smoldering experiments in microgravity. Experimental Thermal and Fluid Science, 2004, 28, 743-751.	2.7	54
36	A methodology for the estimation of ignition delay times in forest fire modelling. Combustion and Flame, 2012, 159, 3652-3657.	5.2	53

#	Article	IF	CITATIONS
37	Fire safety in space – beyond flammability testing of small samples. Acta Astronautica, 2015, 109, 208-216.	3.2	53
38	Scaling-Up fire. Proceedings of the Combustion Institute, 2013, 34, 99-124.	3.9	51
39	Revisiting the Compartment Fire. Fire Safety Science, 2014, 11, 28-45.	0.3	51
40	The effects of different airflows on the formation of pollutants during waste incinerationâ~†. Fuel, 2002, 81, 2277-2288.	6.4	50
41	The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments. Fire Safety Journal, 2019, 108, 102827.	3.1	50
42	Full-scale fire test on an earthquake-damaged reinforced concrete frame. Fire Safety Journal, 2015, 73, 1-19.	3.1	49
43	Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers. Fire Safety Journal, 2012, 54, 203-217.	3.1	48
44	Fire safety in space – Investigating flame spread interaction over wires. Acta Astronautica, 2016, 126, 500-509.	3.2	47
45	A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing. International Journal of Thermal Sciences, 2017, 112, 383-394.	4.9	47
46	Forecasting fire growth using an inverse zone modelling approach. Fire Safety Journal, 2011, 46, 81-88.	3.1	45
47	Delineating and explaining the limits of self-sustained smouldering combustion. Combustion and Flame, 2019, 201, 78-92.	5.2	45
48	A Heat-Transfer Rate Inducing System (H-TRIS) Test Method. Fire Safety Journal, 2019, 105, 307-319.	3.1	45
49	An experimental study of full-scale open floor plan enclosure fires. Fire Safety Journal, 2017, 89, 22-40.	3.1	44
50	Continuous, self-sustaining smouldering destruction of simulated faeces. Fuel, 2017, 190, 58-66.	6.4	43
51	Experimental investigation on the destruction rates of organic waste with high moisture content by means of self-sustained smoldering combustion. Proceedings of the Combustion Institute, 2017, 36, 4419-4426.	3.9	43
52	Self-extinction of timber. Proceedings of the Combustion Institute, 2017, 36, 3055-3062.	3.9	43
53	The Effect of Model Parameters on the Simulation of Fire Dynamics. Fire Safety Science, 2008, 9, 1341-1352.	0.3	42
54	THE EFFECT OF BUOYANCY ON OPPOSED SMOLDERING. Combustion Science and Technology, 2004, 176, 2027-2055.	2.3	41

#	Article	IF	CITATIONS
55	Determination of the Burning Characteristics of a Slick of Oil on Water. Spill Science and Technology Bulletin, 2003, 8, 379-390.	0.4	40
56	Radiant Ignition of Polyurethane Foam: The Effect of Sample Size. Fire Technology, 2014, 50, 673-691.	3.0	40
57	Structural behaviour during a vertically travelling fire. Journal of Constructional Steel Research, 2010, 66, 191-197.	3.9	39
58	Smoldering Combustion as a Treatment Technology for Feces: Sensitivity to Key Parameters. Combustion Science and Technology, 2016, 188, 968-981.	2.3	39
59	Determination of the interfacial heat transfer coefficient between forced air and sand at Reynold's numbers relevant to smouldering combustion. International Journal of Heat and Mass Transfer, 2017, 114, 90-104.	4.8	39
60	A Novel Multiscale Methodology for Simulating Tunnel Ventilation Flows During Fires. Fire Technology, 2011, 47, 221-253.	3.0	38
61	Performance criteria for the fire safe use of thermal insulation in buildings. Construction and Building Materials, 2015, 100, 285-297.	7.2	38
62	The potential of integrating fire safety in modern building design. Fire Safety Journal, 2017, 88, 104-112.	3.1	37
63	Organic liquid mobility induced by smoldering remediation. Journal of Hazardous Materials, 2017, 325, 101-112.	12.4	37
64	Calculation Methods for the Heat Release Rate of Materials of Unknown Composition. Fire Safety Science, 2008, 9, 1165-1176.	0.3	37
65	Description of small and large-scale cross laminated timber fire tests. Fire Safety Journal, 2017, 91, 327-335.	3.1	36
66	Laminar diffusion flame in microgravity: The results of the minitexus 6 sounding rocket experiment. Proceedings of the Combustion Institute, 2000, 28, 2883-2889.	3.9	35
67	Critical heat flux and mass loss rate for extinction of flaming combustion of timber. Fire Safety Journal, 2017, 91, 252-258.	3.1	35
68	Analysis of the ventilation systems in the Dartford tunnels using a multi-scale modelling approach. Tunnelling and Underground Space Technology, 2010, 25, 423-432.	6.2	34
69	Scale And Transport Considerations On Piloted Ignition Of Pmma. Fire Safety Science, 2000, 6, 567-578.	0.3	34
70	Effects of temperature and temperature gradient on concrete performance at elevated temperatures. Advances in Structural Engineering, 2018, 21, 1223-1233.	2.4	33
71	Structural Response of Tall Buildings to Multiple Floor Fires. Journal of Structural Engineering, 2007, 133, 1719-1732.	3.4	32
72	A posteriori modelling of the growth phase of Dalmarnock Fire Test One. Building and Environment, 2011, 46, 1065-1073.	6.9	32

#	Article	IF	CITATIONS
73	Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data. Combustion Science and Technology, 2011, 183, 627-644.	2.3	30
74	Fire Safety of Historical Buildings: Principles and Methodological Approach. International Journal of Architectural Heritage, 2019, 13, 926-940.	3.1	30
75	On the flame height definition for upward flame spread. Fire Safety Journal, 2007, 42, 384-392.	3.1	29
76	Experimental observations on the thermal degradation of a porous bed of tires. Proceedings of the Combustion Institute, 2005, 30, 2239-2246.	3.9	27
77	Modeling of one-dimensional smoldering of polyurethane in microgravity conditions. Proceedings of the Combustion Institute, 2005, 30, 2327-2334.	3.9	27
78	SOOT VOLUME FRACTION MEASUREMENTS IN A THREE-DIMENSIONAL LAMINAR DIFFUSION FLAME ESTABLISHED IN MICROGRAVITY. Combustion Science and Technology, 2006, 178, 813-835.	2.3	27
79	Analysis of the constant B-number assumption while modeling flame spread. Combustion and Flame, 2008, 152, 401-414.	5.2	27
80	Laminar flame propagation on a horizontal fuel surface: Verification of classical Emmons solution. Combustion Theory and Modelling, 2009, 13, 121-141.	1.9	27
81	Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. International Journal of Heat and Mass Transfer, 2013, 61, 742-748.	4.8	27
82	Evolution of fire models for estimating structural fire-resistance. Fire Safety Journal, 2021, 124, 103367.	3.1	27
83	Fire performance of charring closed ell polymeric insulation materials: Polyisocyanurate and phenolic foam. Fire and Materials, 2018, 42, 358-373.	2.0	26
84	Flaming Ignition of Solid Fuels. , 2016, , 633-661.		26
85	The role of local thermal non-equilibrium in modelling smouldering combustion of organic liquids. Proceedings of the Combustion Institute, 2019, 37, 3109-3117.	3.9	25
86	Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy, 2020, 207, 118303.	8.8	25
87	Fire dynamics in mass timber compartments. Fire Safety Journal, 2021, 120, 103098.	3.1	25
88	Heat losses in a smouldering system: The key role of non-uniform air flux. Combustion and Flame, 2021, 227, 309-321.	5.2	25
89	A Review of Sociological Issues in Fire Safety Regulation. Fire Technology, 2017, 53, 1011-1037.	3.0	24
90	Determining the conditions that lead to self-sustained smouldering combustion by means of numerical modelling. Proceedings of the Combustion Institute, 2019, 37, 4043-4051.	3.9	24

#	Article	IF	CITATIONS
91	Scaling up self-sustained smouldering of sewage sludge for waste-to-energy. Waste Management, 2021, 135, 298-308.	7.4	24
92	Bond Behavior of CFRP-to-Steel Bonded Joints at Mild Temperatures: Experimental Study. Journal of Composites for Construction, 2020, 24, .	3.2	23
93	Comparison of Pyrolysis Behavior Results between the Cone Calorimeter and the Fire Propagation Apparatus Heat Sources. Fire Safety Science, 2011, 10, 889-901.	0.3	23
94	Downward smolder of polyurethane foam: ignition signatures. Fire Safety Journal, 2000, 35, 131-147.	3.1	22
95	Full-scale testing of a damaged reinforced concrete frame in fire. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2012, 165, 335-346.	0.8	22
96	Experimental and numerical investigation of weak, self-sustained conditions in engineered smouldering combustion. Combustion and Flame, 2020, 222, 27-35.	5.2	22
97	Numerical evaluation of boundary-layer assumptions used for the prediction of the standoff distance of a laminar diffusion flame. Proceedings of the Combustion Institute, 2002, 29, 2527-2534.	3.9	21
98	The improved energy efficiency of applied smouldering systems with increasing scale. International Journal of Heat and Mass Transfer, 2021, 177, 121548.	4.8	21
99	Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame. Experiments in Fluids, 2007, 43, 939-948.	2.4	20
100	Bulk and particle properties of pine needle fuel beds – influence on combustion. International Journal of Wildland Fire, 2014, 23, 1076.	2.4	20
101	Potential Bio-oil Production from Smouldering Combustion of Faeces. Waste and Biomass Valorization, 2017, 8, 329-338.	3.4	20
102	Experimental observations of the effect of gravity changes on smoldering combustion. AIAA Journal, 1994, 32, 991-996.	2.6	19
103	Mechanisms controlling the degradation of poly(methyl methacrylate) prior to piloted ignition. Proceedings of the Combustion Institute, 2002, 29, 281-287.	3.9	19
104	A nascent educational framework for fire safety engineering. Fire Safety Journal, 2013, 58, 180-194.	3.1	19
105	In-depth temperature measurements in wood exposed to intense radiant energy. Experimental Thermal and Fluid Science, 2008, 32, 1405-1411.	2.7	18
106	Ability of the Fire Propagation Apparatus to characterise the heat release rate of energetic materials. Journal of Hazardous Materials, 2009, 166, 916-924.	12.4	18
107	Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit. Scientific Reports, 2017, 7, 5302.	3.3	18
108	Experimental Characterisation of the Fire Behaviour of Thermal Insulation Materials for a Performance-Based Design Methodology. Fire Technology, 2017, 53, 1201-1232.	3.0	18

#	Article	IF	CITATIONS
109	Experimental Evaluation of Flame Radiative Feedback: Methodology and Application to Opposed Flame Spread Over Coated Wires in Microgravity. Fire Technology, 2020, 56, 185-207.	3.0	18
110	Burning dynamics and in-depth flame spread of wood cribs in large compartment fires. Combustion and Flame, 2021, 228, 42-56.	5.2	18
111	Determination of the Thermal Efficiency of Pre-boilover Burning of a Slick of Oil on Water. Spill Science and Technology Bulletin, 1999, 5, 141-151.	0.4	17
112	Experimental characterisation of two fully-developed enclosure fire regimes. Fire Safety Journal, 2016, 79, 10-19.	3.1	17
113	Application of digital image correlation system for reliable deformation measurement of concrete structures at high temperatures. Engineering Structures, 2019, 192, 181-189.	5.3	17
114	Heat losses in applied smouldering systems: Sensitivity analysis via analytical modelling. International Journal of Heat and Mass Transfer, 2021, 172, 121150.	4.8	17
115	Microgravity Laminar Diffusion Flame In a Perpendicular Fuel and Oxidizer Stream Configuration. AIAA Journal, 2005, 43, 1725-1733.	2.6	16
116	Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame. Optics Letters, 2005, 30, 3311.	3.3	16
117	Defining the thermal boundary condition for protective structures in fire. Engineering Structures, 2017, 149, 104-112.	5.3	16
118	Computational model to investigate the effect of different airflows on the formation of pollutants during waste incineration. Combustion Science and Technology, 2003, 175, 1501-1533.	2.3	15
119	Burning Rate of Liquid Fuel on Carpet (Porous Media). Fire Technology, 2004, 40, 227-246.	3.0	15
120	Experimental investigation of a timber-concrete floor panel system with a hybrid glass fibre reinforced polymer-timber corrugated core. Engineering Structures, 2020, 203, 109832.	5.3	15
121	Numerical evaluation of boundary layer assumptions for laminar diffusion flames in microgravity. Combustion Theory and Modelling, 2005, 9, 137-158.	1.9	14
122	Understanding the effects of stress on the coefficient of thermal expansion. International Journal of Engineering Science, 2019, 141, 83-94.	5.0	14
123	The Effect of Weathering on the Flammability of a Slick of Crude Oil on a Water Bed. Combustion Science and Technology, 2000, 161, 269-308.	2.3	13
124	Fire Performance of Sandwich Panels in a Modified ISO 13784-1 Small Room Test: The Influence of Increased Fire Load for Different Insulation Materials. Fire Technology, 2018, 54, 819-852.	3.0	13
125	A correction method for thermal disturbances induced by thermocouples in a low-conductivity charring material. Fire Safety Journal, 2021, 120, 103077.	3.1	13
126	Stress–strain–temperature relationship for concrete. Fire Safety Journal, 2021, 120, 103126.	3.1	13

#	Article	IF	CITATIONS
127	Flame extinction and burning behaviour of timber under varied oxygen concentrations. Fire Safety Journal, 2021, 120, 103087.	3.1	13
128	Influence of heating conditions and initial thickness on the effectiveness of thin intumescent coatings. Fire Safety Journal, 2021, 120, 103078.	3.1	13
129	Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires. Fire Safety Journal, 2021, 120, 103072.	3.1	13
130	Towards a better understanding of fire performance assessment of façade systems: Current situation and a proposed new assessment framework. Construction and Building Materials, 2021, 300, 124301.	7.2	13
131	An Architecture for an Integrated Fire Emergency Response System for the Built Environment. Fire Safety Science, 2008, 9, 427-438.	0.3	13
132	Small-scale smoldering combustion experiments in microgravity. Proceedings of the Combustion Institute, 1996, 26, 1361-1368.	0.3	12
133	Effect of fire on composite long span truss floor systems. Journal of Constructional Steel Research, 2006, 62, 303-315.	3.9	12
134	A theoretical and numerical evaluation of the steady-state burning rate of vertically oriented PMMA slabs. Combustion Theory and Modelling, 2008, 12, 451-475.	1.9	12
135	A Framework for Selecting Design Fires in Performance Based Fire Safety Engineering. Fire Technology, 2015, 51, 995-1017.	3.0	12
136	Energy distribution analysis in full-scale open floor plan enclosure fires. Fire Safety Journal, 2017, 91, 422-431.	3.1	12
137	Flammability trends for a comprehensive array of cladding materials. Fire Safety Journal, 2021, 120, 103133.	3.1	12
138	Thermal inertia as an integrative parameter for building performance. Journal of Building Engineering, 2021, 33, 101623.	3.4	12
139	Identifying the attributes of a profession in the practice and regulation of fire safety engineering. Fire Safety Journal, 2021, 121, 103274.	3.1	12
140	A simplified correction method for thermocouple disturbance errors in solids. International Journal of Thermal Sciences, 2022, 172, 107324.	4.9	12
141	Large-scale compartment fires to develop a self-extinction design framework for mass timber—Part 1: Literature review and methodology. Fire Safety Journal, 2022, 128, 103523.	3.1	12
142	lgnition signatures of a downward smolder reaction. Experimental Thermal and Fluid Science, 2000, 21, 33-40.	2.7	11
143	A smoke detector activation algorithm for large eddy simulation fire modeling. Fire Safety Journal, 2008, 43, 96-107.	3.1	11
144	Performance Assessment of Pressurized Stairs in High Rise Buildings. Fire Technology, 2009, 45, 189-200.	3.0	11

9

#	Article	IF	CITATIONS
145	Mechanisms of flame spread and burnout in large enclosure fires. Proceedings of the Combustion Institute, 2021, 38, 4525-4533.	3.9	11
146	Rectification of "restrained vs unrestrained― Fire and Materials, 2020, 44, 341-351.	2.0	10
147	Diffusion Flames Upwardly Propagating Over Pmma: Theory, Experiment And Numerical Modeling. Fire Safety Science, 2005, 8, 397-408.	0.3	10
148	A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes. Combustion and Flame, 2022, 237, 111866.	5.2	10
149	Ignition, flame spread and mass burning characteristics of liquid fuels on a water bed. Spill Science and Technology Bulletin, 1996, 3, 209-212.	0.4	9
150	COMPUTATIONAL MODEL TO INVESTIGATE THE MECHANISMS OF NOxFORMATION DURING WASTE INCINERATION. Combustion Science and Technology, 2004, 176, 925-943.	2.3	9
151	Experimental evaluation of the heat flux induced by tunnel fires. Tunnelling and Underground Space Technology, 2016, 60, 49-55.	6.2	9
152	IAFSS Working Group on Measurement and Computation of Fire Phenomena. Fire Technology, 2016, 52, 607-610.	3.0	9
153	Deformation capturing of concrete structures at elevated temperatures. Procedia Engineering, 2017, 210, 613-621.	1.2	9
154	Scaling analysis of ice melting during burning of oil in ice-infested waters. International Journal of Heat and Mass Transfer, 2019, 130, 386-392.	4.8	9
155	Piloted ignition of a slick of oil on a water sublayer: The effect of weathering. Proceedings of the Combustion Institute, 1998, 27, 2783-2790.	0.3	8
156	Measurements of Smoke Characteristics in HVAC Ducts. Fire Technology, 2001, 37, 363-395.	3.0	8
157	A Comparison of Driving Forces for Smoke Movement in Buildings. Journal of Fire Protection Engineering, 2004, 14, 237-264.	0.8	8
158	Ignition performance of new and used motor vehicle upholstery fabrics. Fire and Materials, 2005, 29, 265-282.	2.0	8
159	Fire-induced structural failure: the World Trade Center, New York. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2011, 164, 69-77.	0.5	8
160	Using Computational Fluid Dynamics in the forensic analysis of a prison fire. Forensic Science International, 2015, 253, e33-e42.	2.2	8
161	Star: a uniquely sustainable inÂsitu and ex situ remediation process. , 2020, , 221-246.		8
162	Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations. Proceedings of the Combustion Institute, 2021, 38, 4805-4814.	3.9	8

#	Article	IF	CITATIONS
163	Integrated nonlinear structural simulation of composite buildings in fire. Engineering Structures, 2022, 252, 113593.	5.3	8
164	Numerical study of the combustion regimes in naturally-vented compartment fires. Fire Safety Journal, 2022, 131, 103604.	3.1	8
165	Estimation of boundary layer diffusion flame temperatures by means of an infrared camera under microgravity conditions. Measurement Science and Technology, 1999, 10, 859-865.	2.6	7
166	Effects of Fire Retardants and Nanofillers on the Fire Toxicity. ACS Symposium Series, 2009, , 342-366.	0.5	7
167	The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture. Experimental Thermal and Fluid Science, 2010, 34, 282-289.	2.7	7
168	Methodology for estimating pyrolysis rates of charring insulation materials using experimental temperature measurements. Journal of Building Engineering, 2016, 8, 249-259.	3.4	7
169	Uncertainty-based decision-making in fire safety: Analyzing the alternatives. Journal of Loss Prevention in the Process Industries, 2020, 68, 104288.	3.3	7
170	Thermal behaviour of laminated bamboo structures under fire conditions. Fire and Materials, 2021, 45, 321-330.	2.0	7
171	Origin and Justification of the Use of the Arrhenius Relation to Represent the Reaction Rate of the Thermal Decomposition of a Solid. Applied Sciences (Switzerland), 2021, 11, 4075.	2.5	7
172	Multiphase modelling of water evaporation and condensation in an air-heated porous medium. Applied Thermal Engineering, 2022, 212, 118516.	6.0	7
173	Forecasting Fire Growth using an Inverse CFD Modelling Approach in a Real-Scale Fire Test. Fire Safety Science, 2011, 10, 1349-1358.	0.3	6
174	Downward Smolder Of Polyurethane Foam. Fire Safety Science, 1994, 4, 409-420.	0.3	6
175	Inclusive Design of Workspaces: Mixed Methods Approach to Understanding Users. Sustainability, 2022, 14, 3337.	3.2	6
176	Fire safety in spacecraft: Past incidents and Deep Space challenges. Acta Astronautica, 2022, 195, 344-354.	3.2	6
177	Enhanced Deposition, Acoustic Agglomeration, and Chladni Figures in Smoke Detectors. Fire Technology, 2001, 37, 343-362.	3.0	5
178	Title is missing!. Fire Technology, 2003, 39, 309-346.	3.0	5
179	Ignition Handbook, Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science by Vytenis Babrauskas, PhD. Journal of Fire Protection Engineering, 2004, 14, 229-232.	0.8	5
180	The Behavior of Liquid Fuel on Carpet (Porous Media): A Case for the Inclusion of Science in Fire Investigation. Fire Technology, 2010, 46, 843-852.	3.0	5

#	Article	IF	CITATIONS
181	Call for participation in the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena. Fire Safety Journal, 2016, 82, 146-147.	3.1	5
182	Effects of substrate thermal conditions on the swelling of thin intumescent coatings. Fire and Materials, 2021, 45, 952-965.	2.0	5
183	A competency framework for fire safety engineering. Fire Safety Journal, 2022, 127, 103511.	3.1	5
184	Factors influencing the fire dynamics in open-plan compartments with an exposed timber ceiling. Fire Safety Journal, 2022, 129, 103564.	3.1	5
185	Gas - gas and gas - solid laminar flat plate diffusion flame in microgravity: Structure and stability. Microgravity Science and Technology, 2001, 13, 3-6.	1.4	4
186	Numerical study of NOx formation during incineration of cellulosic and plastic materials: The combustion regime. International Journal of Thermal Sciences, 2010, 49, 443-453.	4.9	4
187	Testing of Full-scale RC Frame under Simulated Fire Following Earthquake. Journal of Structural Fire Engineering, 2014, 5, 215-228.	0.8	4
188	Combustion in microgravity: The French contribution. Comptes Rendus - Mecanique, 2017, 345, 86-98.	2.1	4
189	Experimental study into the behaviour of profiled composite walls under combined axial and thermal loadings. Engineering Structures, 2020, 210, 110354.	5.3	4
190	Understanding fire growth for performance based design of bamboo structures. Fire Safety Journal, 2021, 120, 103057.	3.1	4
191	THE RISK IMPOSED BY FIRE TO BUILDINGS AND HOW TO ADDRESS IT. , 2006, , 41-57.		4
192	Experimental characterization of a laminar diffusion flame in micro-gravity. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1999, 96, 1022-1030.	0.2	4
193	Maximum allowable damage approach to fire safety performance quantification. Fire Safety Journal, 2022, 128, 103537.	3.1	4
194	The Collapse of World Trade Center 7: Revisited. Fire Technology, 0, , 1.	3.0	4
195	Thermal characterization of building assemblies by means of transient data assimilation. Energy and Buildings, 2017, 155, 128-142.	6.7	3
196	Experimental study on the fuel requirements for the thermal degradation of bodies by means of open pyre cremation. Fire Safety Journal, 2018, 98, 63-73.	3.1	3
197	Understanding Fire Safety of Historical Buildings. RILEM Bookseries, 2019, , 33-43.	0.4	3
198	On the Role of Bulk Properties and Fuel Species on the Burning Dynamics of Pine Forest Litters. Fire Safety Science, 2011, 10, 1401-1414.	0.3	3

#	Article	IF	CITATIONS
199	Time-dependent Multiscale Simulations of Fire Emergencies in Longitudinally Ventilated Tunnels. Fire Safety Science, 2011, 10, 359-372.	0.3	3
200	Experimental Observations On The Geometry And Stability Of A Laminar Diffusion Flame In Micro-gravity. Fire Safety Science, 2000, 6, 373-384.	0.3	3
201	Calculation Of Vertical Parallel Wall Fires With Buoyancy-induced Flow. Fire Safety Science, 2000, 6, 671-682.	0.3	3
202	The collapse of World Trade Center 7: revisited. , 2020, , .		3
203	The effect of parietal fuel injection on a laminar diffusion flame. , 1999, , .		2
204	Using megaproject performance outcomes to enhance decision-making behaviors in civil engineering graduates. Construction Economics and Building, 2019, 19, .	0.9	2
205	Study on the effectiveness of fire suppression deluge systems in tunnels. Tunnelling and Underground Space Technology, 2021, 108, 103764.	6.2	2
206	Understanding flame extinction in timber under external heating using high-activation energy asymptotics. Combustion and Flame, 2022, 235, 111645.	5.2	2
207	Influence of G-jitter on the characteristics of a non-premixed flame: Experimental approach. Microgravity Science and Technology, 2005, 16, 328-332.	1.4	1
208	Discussion: Fire-induced structural failure: the World Trade Center, New York. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2012, 165, 105-107.	0.5	1
209	Development of Large-Scale Spacecraft Fire Safety Experiments. , 2013, , .		1
210	An Example Of The Use Of Standard Flammability Criteria For Performance Analysis Of Materials: Polycarbonate And Pmma. Fire Safety Science, 2005, 8, 493-504.	0.3	1
211	A Comparative Analysis of the Use of Different Zone Models to Predict the Mass Smoke Flow for Axisymetric and Spill Plumes. Fire Safety Science, 2008, 9, 751-762.	0.3	1
212	Data driven forecast of concurrent flame spread in micro-gravity. Combustion and Flame, 2022, 241, 112078.	5.2	1
213	Fire performance of closedâ€cell charring insulation materials in plasterboardâ€insulation assemblies. Fire and Materials, 2019, 43, 632-643.	2.0	0
214	Data driven forecast of droplet combustion. Proceedings of the Combustion Institute, 2021, 38, 4785-4793.	3.9	0
215	Laboratorio de Ensayo de Resistencia al Fuego. Fire Safety Science, 2003, 7, 111-112.	0.3	0
216	Numerical Evaluation Of The Influence Of Fuel Generation On The Geometry Of A Diffusion Flame: Implications To Micro-gravity Fire Safety. Fire Safety Science, 2003, 7, 283-294.	0.3	0

#	ARTICLE	IF	CITATIONS
217	Épaisseur optique d'une couche de suie formée par une flamme de diffusion en micropesanteur. Mecanique Et Industries, 2004, 5, 597-605.	0.2	Ο
218	Experimental Measurements of the Volumetric Heat Transfer Coefficient between Forced Air and Sand at Reynold's Numbers Relevant to Smouldering Combustion. , 0, , .		0
219	The building envelope: failing to understand complexity in tall building design. , 2022, , 341-357.		0