Eva Stoeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057299/publications.pdf

Version: 2024-02-01

47006 46799 8,279 100 47 89 citations h-index g-index papers 104 104 104 5294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular farming in plants: host systems and expression technology. Trends in Biotechnology, 2003, 21, 570-578.	9.3	627
2	Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 2004, 7, 152-158.	7.1	563
3	Sowing the seeds of success: pharmaceutical proteins from plants. Current Opinion in Biotechnology, 2005, 16, 167-173.	6.6	315
4	Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant Journal, 1998, 15, 469-477.	5.7	299
5	Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 2005, 15, 305-327.	2.1	291
6	Molecular farming for new drugs and vaccines. EMBO Reports, 2005, 6, 593-599.	4.5	286
7	Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Molecular Biology, 2000, 42, 583-590.	3.9	283
8	Endosperm-Specific Co-Expression of Recombinant Soybean Ferritin and Aspergillus Phytase in Maize Results in Significant Increases in the Levels of Bioavailable Iron. Plant Molecular Biology, 2005, 59, 869-880.	3.9	252
9	Transgene integration, organization and interaction in plants. Plant Molecular Biology, 2003, 52, 247-258.	3.9	241
10	Plantibodies: applications, advantages and bottlenecks. Current Opinion in Biotechnology, 2002, 13, 161-166.	6.6	208
11	Regulatory approval and a firstâ€inâ€human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13, 1106-1120.	8.3	205
12	Flavonols Stimulate Development, Germination, and Tube Growth of Tobacco Pollen. Plant Physiology, 1992, 100, 902-907.	4.8	192
13	Title is missing!. Molecular Breeding, 1999, 5, 65-73.	2.1	177
14	Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIVâ€1 and contains predominantly singleâ€GlcNAc <i>N</i> à€glycans. Plant Biotechnology Journal, 2008, 6, 189-201.	8.3	166
15	Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3727-3732.	7.1	154
16	Plant Molecular Pharming for the Treatment of Chronic and Infectious Diseases. Annual Review of Plant Biology, 2014, 65, 743-768.	18.7	154
17	Plant Molecular Farming: Much More than Medicines. Annual Review of Analytical Chemistry, 2016, 9, 271-294.	5.4	147
18	Heritable Genomic Fragment Deletions and Small Indels in the Putative ENGase Gene Induced by CRISPR/Cas9 in Barley. Frontiers in Plant Science, 2017, 8, 540.	3.6	146

#	Article	IF	Citations
19	Practical considerations for pharmaceutical antibody production in different crop systems. Molecular Breeding, 2002, 9, 149-158.	2.1	142
20	The increasing value of plant-made proteins. Current Opinion in Biotechnology, 2015, 32, 163-170.	6.6	120
21	Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Research, 2000, 9, 445-452.	2.4	110
22	Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Research, 1999, 8, 441-449.	2.4	109
23	Biochemical and functional characterization of antiâ€HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnology Journal, 2008, 6, 379-391.	8.3	109
24	Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm. Plant Physiology, 2004, 136, 3457-3466.	4.8	101
25	Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize, and Rice Â. Plant Physiology, 2011, 156, 1087-1100.	4.8	99
26	Influence of elastinâ€like peptide fusions on the quantity and quality of a tobaccoâ€derived human immunodeficiency virusâ€neutralizing antibody. Plant Biotechnology Journal, 2009, 7, 899-913.	8.3	88
27	Heat-Stable Phytases in Transgenic Wheat (Triticum aestivumL.): Deposition Pattern, Thermostability, and Phytate Hydrolysis. Journal of Agricultural and Food Chemistry, 2006, 54, 4624-4632.	5.2	87
28	Functional analysis of the broadly neutralizing human antiâ€HIVâ€1 antibody 2F5 produced in transgenic BYâ€2 suspension cultures. FASEB Journal, 2007, 21, 1655-1664.	0.5	84
29	Molecular Characteristics of Transgenic Wheat and the Effect on Transgene Expression. Transgenic Research, 1998, 7, 463-471.	2.4	83
30	From gene to harvest: insights into upstream process development for the <scp>GMP</scp> production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13, 1094-1105.	8.3	79
31	The Intracellular Fate of a Recombinant Protein Is Tissue Dependent. Plant Physiology, 2006, 141, 578-586.	4.8	77
32	The formation, function and fate of protein storage compartments in seeds. Protoplasma, 2012, 249, 379-392.	2.1	76
33	Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Research, 1998, 7, 371-378.	2.4	73
34	A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnology Journal, 2004, 3, 115-127.	8.3	73
35	Title is missing!. Molecular Breeding, 2000, 6, 345-352.	2.1	71
36	Targeted modification of plant genomes for precision crop breeding. Biotechnology Journal, 2017, 12, 1600173.	3.5	71

#	Article	IF	CITATIONS
37	Pea Legumin Overexpressed in Wheat Endosperm Assembles into an Ordered Paracrystalline Matrix. Plant Physiology, 2001, 125, 1732-1742.	4.8	70
38	Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant Journal, 2000, 24, 713-723.	5.7	66
39	Native and Artificial Reticuloplasmins Co-Accumulate in Distinct Domains of the Endoplasmic Reticulum and in Post-Endoplasmic Reticulum Compartments. Plant Physiology, 2001, 127, 1212-1223.	4.8	65
40	The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Frontiers in Plant Science, 2014, 5, 439.	3.6	65
41	The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. Plant Signaling and Behavior, 2006, 1, 185-195.	2.4	61
42	Extracellular Vesicles in Human Skin: Cross-TalkÂfrom Senescent Fibroblasts to Keratinocytes by miRNAs. Journal of Investigative Dermatology, 2019, 139, 2425-2436.e5.	0.7	61
43	The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. Journal of Cell Science, 2002, 115, 4597-4605.	2.0	59
44	Rice endosperm produces an underglycosylated and potent form of the <scp>HIV</scp> â€neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 2016, 14, 97-108.	8.3	58
45	Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnology Journal, 2012, 7, 1099-1108.	3.5	56
46	Plants as bioreactors: A comparative study suggests that Medicago truncatula is a promising production system. Journal of Biotechnology, 2005, 120, 121-134.	3.8	55
47	Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm*. Journal of Experimental Botany, 2014, 65, 3249-3261.	4.8	52
48	Plant-based solutions for veterinary immunotherapeutics and prophylactics. Veterinary Research, 2014, 45, 117.	3.0	50
49	Nonâ€food/feed seeds as biofactories for the highâ€yield production of recombinant pharmaceuticals. Plant Biotechnology Journal, 2011, 9, 911-921.	8.3	48
50	Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs, 2014, 6, 1585-1597.	5.2	47
51	A Welcome Proposal to Amend the GMO Legislation of the EU. Trends in Biotechnology, 2018, 36, 1100-1103.	9.3	47
52	The case for plant-made veterinary immunotherapeutics. Biotechnology Advances, 2016, 34, 597-604.	11.7	46
53	Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30, 461-498.	2.4	46
54	Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgenic Research, 1999, 8, 73-82.	2.4	44

#	Article	IF	Citations
55	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
56	Subcellular Accumulation and Modification of Pharmaceutical Proteins in Different Plant Tissues. Current Pharmaceutical Design, 2013, 19, 5495-5502.	1.9	42
57	Transgenic Production of an Anti HIV Antibody in the Barley Endosperm. PLoS ONE, 2015, 10, e0140476.	2.5	41
58	The Changing Fate of a Secretory Glycoprotein in Developing Maize Endosperm Â. Plant Physiology, 2010, 153, 693-702.	4.8	40
59	Rice endosperm is costâ€effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnology Journal, 2016, 14, 1427-1437.	8.3	40
60	Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgenic Research, 1992, 1, 71-78.	2.4	39
61	Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies. Hum Vaccin, 2011, 7, 367-374.	2.4	38
62	Influence of Elastin-Like Polypeptide and Hydrophobin on Recombinant Hemagglutinin Accumulations in Transgenic Tobacco Plants. PLoS ONE, 2014, 9, e99347.	2.5	38
63	Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Molecular Biology, 2013, 83, 105-117.	3.9	37
64	Predominant localization of the major Alternaria allergen Alt a 1 in the cell wall of airborne spores. Journal of Allergy and Clinical Immunology, 2012, 129, 1148-1149.	2.9	35
65	The architecture of interphase chromosomes and nucleolar transcription sites in plants. Journal of Structural Biology, 2002, 140, 31-38.	2.8	34
66	N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. Frontiers in Plant Science, 2021, 12, 689104.	3.6	34
67	Overexpression of the wheat FK506-binding protein 73 (FKBP73) and the heat-induced wheat FKBP77 in transgenic wheat reveals different functions of the two isoforms. Transgenic Research, 2002, 11, 373-379.	2.4	33
68	Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm. Protoplasma, 2016, 253, 137-153.	2.1	32
69	Contributions of the international plant science community to the fight against infectious diseases in humansâ€"part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
70	Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. Frontiers in Plant Science, 2018, 9, 775.	3.6	26
71	Large-scale chromatin decondensation induced in a developmentally activated transgene locus. Journal of Cell Science, 2005, 118, 1021-1031.	2.0	22
72	Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells. Plants, 2014, 3, 442-457.	3.5	22

#	Article	IF	CITATIONS
73	Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta, 2008, 227, 649-658.	3.2	20
74	The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence. Frontiers in Bioengineering and Biotechnology, 2014, 2, 67.	4.1	19
75	Cloning and plantâ€based production of antibody <scp>MC</scp> 10E7 for a lateral flow immunoassay to detect [4â€arginine]microcystin in freshwater. Plant Biotechnology Journal, 2018, 16, 27-38.	8.3	19
76	High levels of stable phytase accumulate in the culture medium of transgenic <i>Medicago truncatula </i> cell suspension cultures. Biotechnology Journal, 2008, 3, 916-923.	3.5	18
77	Microscopic and Proteomic Analysis of Dissected Developing Barley Endosperm Layers Reveals the Starchy Endosperm as Prominent Storage Tissue for ER-Derived Hordeins Alongside the Accumulation of Barley Protein Disulfide Isomerase (HvPDIL1-1). Frontiers in Plant Science, 2018, 9, 1248.	3.6	18
78	Maize 16-kD \hat{l}^3 -zein forms very unusual disulfide-bonded polymers in the endoplasmic reticulum: implications for prolamin evolution. Journal of Experimental Botany, 2018, 69, 5013-5027.	4.8	16
79	The Encapsulation of Hemagglutinin in Protein Bodies Achieves a Stronger Immune Response in Mice than the Soluble Antigen. Frontiers in Plant Science, 2016, 7, 142.	3.6	15
80	Production and Localization of Recombinant Pharmaceuticals in Transgenic Seeds. Methods in Molecular Biology, 2009, 483, 69-87.	0.9	14
81	LALF _{32â€51} â€E7, a HPVâ€16 therapeutic vaccine candidate, forms protein bodyâ€like structures when expressed in <i>Nicotiana benthamiana</i> leaves. Plant Biotechnology Journal, 2018, 16, 628-637.	8.3	14
82	Glyco-Engineering of Plant-Based Expression Systems. Advances in Biochemical Engineering/Biotechnology, 2018, 175, 137-166.	1.1	13
83	Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports, 1996, 16, 12-17.	5.6	13
84	Plantâ€derived protein bodies as delivery vehicles for recombinant proteins into mammalian cells. Biotechnology and Bioengineering, 2020, 117, 1037-1047.	3.3	12
85	In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods, 2006, 2, 18.	4.3	11
86	Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Scientific Reports, 2020, 10, 1864.	3.3	11
87	Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. Frontiers in Plant Science, 2019, 10, 777.	3.6	10
88	CRISPR/Cas9â€mediated knockout of a prolylâ€4â€hydroxylase subfamily in <i>Nicotiana benthamiana</i> using DsRed2 for plant selection. Biotechnology Journal, 2022, 17, e2100698.	3.5	9
89	Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. Frontiers in Plant Science, 2021, 12, 747500.	3.6	8
90	Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins. Biotechnology Journal, 2013, 8, 1203-1212.	3.5	7

#	Article	IF	CITATIONS
91	Microparticles and Nanoparticles from Plants—The Benefits of Bioencapsulation. Vaccines, 2021, 9, 369.	4.4	7
92	Editorial: From plant biotechnology to bioâ€based products. Biotechnology Journal, 2013, 8, 1122-1123.	3.5	6
93	Imaging the ER and Endomembrane System in Cereal Endosperm. Methods in Molecular Biology, 2018, 1691, 251-262.	0.9	6
94	Plant bioreactors – the taste of sweet success. Biotechnology Journal, 2012, 7, 475-476.	3.5	5
95	Detection of CRISPR/Cas9-Induced Genomic Fragment Deletions in Barley and Generation of Homozygous Edited Lines via Embryogenic Pollen Culture. Methods in Molecular Biology, 2018, 1789, 9-20.	0.9	4
96	Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare) and Wheat (Triticum) Tj ETQq() 0 0 rgBT /(Overlock 10 Tf
97	Monocot Expression Systems for Molecular Farming. , 2005, , 55-67.		3
98	Progressive Aggregation of 16 kDa Gamma-Zein during Seed Maturation in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 12671.	4.1	3
99	Crop Plants for Molecular Farming. , 0, , .		O
100	Editorial: CRISPR and alternative approaches. Biotechnology Journal, 2022, 17, .	3.5	0