## James K Hane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6056966/publications.pdf Version: 2024-02-01



IAMES K HANE

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes<br>Associated With Virulence. Frontiers in Plant Science, 2022, 13, 811152.                                                                                                                              | 1.7 | 1         |
| 2  | Chromosome-level genome assembly and manually-curated proteome of model necrotroph<br>Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and<br>redundancy of virulence-related functions within an accessory chromosome. BMC Genomics, 2021, 22,<br>382. | 1.2 | 12        |
| 3  | Gene Validation and Remodelling Using Proteogenomics of Phytophthora cinnamomi, the Causal Agent of Dieback. Frontiers in Microbiology, 2021, 12, 665396.                                                                                                                                        | 1.5 | 3         |
| 4  | Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microbial Genomics, 2021, 7, .                                                                                                                                                    | 1.0 | 7         |
| 5  | An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens. Scientific Reports, 2021, 11, 19731.                                                                                                                                    | 1.6 | 27        |
| 6  | Crop-Zone Weed Mycobiomes of the South-Western Australian Grain Belt. Frontiers in Microbiology,<br>2020, 11, 581592.                                                                                                                                                                            | 1.5 | 4         |
| 7  | Reference Genome Assembly for Australian <i>Ascochyta rabiei</i> Isolate ArME14. G3: Genes, Genomes,<br>Genetics, 2020, 10, 2131-2140.                                                                                                                                                           | 0.8 | 15        |
| 8  | Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens<br>Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics, 2019, 20, 385.                                                                                         | 1.2 | 11        |
| 9  | A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. PLoS ONE, 2019, 14, e0214201.                                                                                          | 1.1 | 23        |
| 10 | Adapting legume crops to climate change using genomic approaches. Plant, Cell and Environment, 2019, 42, 6-19.                                                                                                                                                                                   | 2.8 | 74        |
| 11 | "CATAStrophy,―a Genome-Informed Trophic Classification of Filamentous Plant Pathogens – How<br>Many Different Types of Filamentous Plant Pathogens Are There?. Frontiers in Microbiology, 2019, 10,<br>3088.                                                                                     | 1.5 | 41        |
| 12 | Bioinformatic prediction of plant–pathogenicity effector proteins of fungi. Current Opinion in<br>Microbiology, 2018, 46, 43-49.                                                                                                                                                                 | 2.3 | 69        |
| 13 | Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 779-788.                                                                                                                         | 1.4 | 93        |
| 14 | Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics, 2018, 19, 279.                                                                                                                                | 1.2 | 56        |
| 15 | Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales).<br>Frontiers in Microbiology, 2018, 9, 3058.                                                                                                                                                        | 1.5 | 35        |
| 16 | Pan-Parastagonospora Comparative Genome Analysis—Effector Prediction and Genome Evolution.<br>Genome Biology and Evolution, 2018, 10, 2443-2457.                                                                                                                                                 | 1.1 | 43        |
| 17 | The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 2543-2554.                                                                                                                                    | 1.8 | 28        |
| 18 | Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 887-901.                                                                                                                               | 1.8 | 50        |

James K Hane

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Scientific Reports, 2017, 7, 10410.                                       | 1.6 | 62        |
| 20 | A comprehensive draft genome sequence for lupin ( <i>Lupinus angustifolius</i> ), an emerging health<br>food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal,<br>2017, 15, 318-330. | 4.1 | 153       |
| 21 | Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using<br>Next-Generation Genomics, Transcriptomics and Proteogenomics. PLoS ONE, 2016, 11, e0147221.                                                  | 1.1 | 47        |
| 22 | OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes. Genome Biology and Evolution, 2016, 8, 2044-2064.                                                                                                     | 1.1 | 123       |
| 23 | Utilizing Gene Tree Variation to Identify Candidate Effector Genes in <i>Zymoseptoria tritici</i> . G3:<br>Genes, Genomes, Genetics, 2016, 6, 779-791.                                                                          | 0.8 | 24        |
| 24 | Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth. Data in Brief, 2016, 8, 267-271.                                                                               | 0.5 | 5         |
| 25 | Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting<br>Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics,<br>2016, 17, 191.        | 1.2 | 109       |
| 26 | Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and<br>Insight into Adaptation to Different Plant Hosts. Molecular and Cellular Proteomics, 2016, 15,<br>1188-1203.           | 2.5 | 37        |
| 27 | Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in<br>Wheat. PLoS ONE, 2016, 11, e0152548.                                                                                   | 1.1 | 77        |
| 28 | Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal<br>Effectors. Frontiers in Plant Science, 2015, 6, 1168.                                                                      | 1.7 | 85        |
| 29 | Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Fungal Biology, 2015, , 55-68.                                                                                                                | 0.3 | 49        |
| 30 | Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biology, 2015, 15, 106.                                                            | 1.6 | 49        |
| 31 | Overview of genomic and bioinformatic resources for Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 13-16.                                                                                                         | 0.9 | 17        |
| 32 | Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 71-75.     | 0.9 | 7         |
| 33 | CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics, 2015, 16, 170.                                                                                     | 1.2 | 158       |
| 34 | Transcriptome sequencing of different narrowâ€leafed lupin tissue types provides a comprehensive<br>uniâ€gene assembly and extensive geneâ€based molecular markers. Plant Biotechnology Journal, 2015, 13,<br>14-25.            | 4.1 | 70        |
| 35 | The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS ONE, 2015, 10, e0126978.                                          | 1.1 | 45        |
| 36 | Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani<br>AG8. PLoS Genetics, 2014, 10, e1004281.                                                                                       | 1.5 | 145       |

JAMES K HANE

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of<br>Metarhizium species. BMC Genomics, 2014, 15, 660.                                                                                                | 1.2  | 59        |
| 38 | Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.<br>Nature Biotechnology, 2013, 31, 240-246.                                                                                                          | 9.4  | 1,049     |
| 39 | Comparative Genomics of a Plant-Pathogenic Fungus, <i>Pyrenophora tritici-repentis</i> , Reveals<br>Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence. G3:<br>Genes, Genomes, Genetics, 2013, 3, 41-63. | 0.8  | 167       |
| 40 | Resequencing and Comparative Genomics of <i>Stagonospora nodorum</i> : Sectional Gene Absence and Effector Discovery. G3: Genes, Genomes, Genetics, 2013, 3, 959-969.                                                                               | 0.8  | 66        |
| 41 | Draft Genome Sequence of Bacillus thuringiensis Strain DAR 81934, Which Exhibits Molluscicidal<br>Activity. Genome Announcements, 2013, 1, e0017512.                                                                                                | 0.8  | 12        |
| 42 | A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi. BMC Genomics, 2013, 14, 807.                                                                                                      | 1.2  | 26        |
| 43 | Transcriptome analysis of <i>Stagonospora nodorum</i> : gene models, effectors, metabolism and pantothenate dispensability. Molecular Plant Pathology, 2012, 13, 531-545.                                                                           | 2.0  | 40        |
| 44 | 9 Genomic and Comparative Analysis of the Class Dothideomycetes. , 2011, , 205-229.                                                                                                                                                                 |      | 5         |
| 45 | A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biology, 2011, 12, R45.                                                                                                                                      | 13.9 | 126       |
| 46 | Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics, 2011, 12, 521.                                          | 1.2  | 53        |
| 47 | Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.                                                                                  | 5.8  | 481       |
| 48 | Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome<br>Structure, Chromosome Plasticity, and Stealth Pathogenesis. PLoS Genetics, 2011, 7, e1002070.                                                         | 1.5  | 532       |
| 49 | In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics, 2010, 11, 655.                                                                            | 1.2  | 41        |
| 50 | Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic<br>Environment and Exposure to Resistance Genes in Host Plants. PLoS Pathogens, 2010, 6, e1001180.                                                        | 2.1  | 158       |
| 51 | Ubiquity of ToxA and absence of ToxB in Australian populations of <i>Pyrenophora<br/>tritici</i> - <i>repentis</i> . Australasian Plant Pathology, 2010, 39, 63.                                                                                    | 0.5  | 59        |
| 52 | A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biology,<br>2010, 11, R109.                                                                                                                                | 3.8  | 90        |
| 53 | Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics, 2009, 10, 301.                            | 1.2  | 33        |
| 54 | RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics, 2008, 9, 478.                                                                                                        | 1.2  | 151       |

JAMES K HANE

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics, 2008, 9, 380.                                | 1.2 | 103       |
| 56 | A quantitative PCR approach to determine gene copy number. Fungal Genetics Reports, 2008, 55, 5-8.                                                                                       | 0.6 | 53        |
| 57 | Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat<br>Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.              | 3.1 | 235       |
| 58 | Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theoretical<br>and Applied Genetics, 2007, 114, 549-558.                                           | 1.8 | 97        |
| 59 | The first gene-based map of Lupinus angustifolius Llocation of domestication genes and conserved synteny with Medicago truncatula. Theoretical and Applied Genetics, 2006, 113, 225-238. | 1.8 | 116       |