
Robson Tramontina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	7.3	91
2	Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource Technology, 2016, 219, 319-329.	9.6	45
3	Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass. Green Chemistry, 2020, 22, 144-152.	9.0	38
4	The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnology for Biofuels, 2017, 10, 4.	6.2	27
5	Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess and Biosystems Engineering, 2020, 43, 1509-1519.	3.4	27
6	Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Frontiers in Microbiology, 2016, 7, 1518.	3.5	26
7	Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture. International Journal of Biological Macromolecules, 2017, 99, 384-393.	7.5	22
8	Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World Journal of Microbiology and Biotechnology, 2020, 36, 166.	3.6	21
9	Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse. Bioenergy Research, 2022, 15, 1169-1181.	3.9	21
10	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	3.5	16
11	Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. International Journal of Biological Macromolecules, 2019, 139, 654-664.	7.5	15
12	Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chemical Papers, 2015, 69, .	2.2	14
13	Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme and Microbial Technology, 2020, 135, 109490.	3.2	14
14	Microorganisms as bioabatement agents in biomass to bioproducts applications. Biomass and Bioenergy, 2021, 151, 106161.	5.7	14
15	Cooperation of <i>Aspergillus nidulans</i> enzymes increases plant polysaccharide saccharification. Biotechnology Journal, 2016, 11, 988-992.	3.5	8
16	Comparison of <i>Spathaspora passalidarum</i> and recombinant <i>Saccharomyces cerevisiae</i> for integration of first- and second-generation ethanol production. FEMS Yeast Research, 2021, 21, .	2.3	7
17	Oxidative cleavage of polysaccharides by a termite-derived <i>superoxide dismutase</i> boosts the degradation of biomass by glycoside hydrolases. Green Chemistry, 2022, 24, 4845-4858.	9.0	7
18	Heterologous Expression of Carbohydrate-Active Enzymes in Filamentous Fungi. , 2015, , 148-201.		2