Dafa Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6056636/publications.pdf

Version: 2024-02-01

		279798	289244
50	1,679	23	40
papers	citations	h-index	g-index
5 4	5 4	Γ 4	1201
54	54	54	1281
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Metallaaromatic Chemistry: History and Development. Chemical Reviews, 2020, 120, 12994-13086.	47.7	130
2	Reconstitution of [Fe]-hydrogenase using model complexes. Nature Chemistry, 2015, 7, 995-1002.	13.6	92
3	[Fe]â€Hydrogenase Models Featuring Acylmethylpyridinyl Ligands. Angewandte Chemie - International Edition, 2010, 49, 7512-7515.	13.8	90
4	A Fiveâ€Coordinate Iron Center in the Active Site of [Fe]â€Hydrogenase: Hints from a Model Study. Angewandte Chemie - International Edition, 2011, 50, 5671-5673.	13.8	85
5	Synthesis and Reactivity of Iron Acyl Complexes Modeling the Active Site of [Fe]-Hydrogenase. Journal of the American Chemical Society, 2010, 132, 928-929.	13.7	78
6	High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale, 2018, 10, 15926-15931.	5.6	74
7	Methylation of Amines and Ketones with Methanol Catalyzed by an Iridium Complex Bearing a 2-Hydroxypyridylmethylene Fragment. Organometallics, 2018, 37, 3353-3359.	2.3	70
8	Hydrogen-activating models of hydrogenases. Coordination Chemistry Reviews, 2015, 303, 32-41.	18.8	66
9	An Iron Carbonyl Pyridonate Complex Related to the Active Site of the [Fe]-Hydrogenase (Hmd). Inorganic Chemistry, 2009, 48, 3514-3516.	4.0	63
10	Ruthenium-Catalyzed β-Alkylation of Secondary Alcohols and α-Alkylation of Ketones via Borrowing Hydrogen: Dramatic Influence of the Pendant <i>N</i> -Heterocycle. Organometallics, 2019, 38, 654-664.	2.3	63
11	Reversible Protonation of a Thiolate Ligand in an [Fe]â€Hydrogenase Model Complex. Angewandte Chemie - International Edition, 2012, 51, 1919-1921.	13.8	51
12	Halide Ion-Mediated Synthesis of L1 _O -FePt Nanoparticles with Tunable Magnetic Properties. Nano Letters, 2018, 18, 7839-7844.	9.1	51
13	Synthesis and Reactivity of Mononuclear Iron Models of [Fe]â€Hydrogenase that Contain an Acylmethylpyridinol Ligand. Chemistry - A European Journal, 2014, 20, 1677-1682.	3.3	50
14	Manganese(I)-Catalyzed Transfer Hydrogenation and Acceptorless Dehydrogenative Condensation: Promotional Influence of the Uncoordinated N-Heterocycle. Organometallics, 2019, 38, 3218-3226.	2.3	47
15	[Fe]â∈Hydrogenase and Models that Contain IronAcyl Ligation. Chemistry - an Asian Journal, 2013, 8, 1068-1075.	3.3	44
16	Synthesis and Reactivity of Metal–Ligand Cooperative Bifunctional Ruthenium Hydride Complexes: Active Catalysts for β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 2018, 37, 2795-2806.	2.3	42
17	Synthesis and Characterization of a Series of Model Complexes of the Active Site of [Fe]-Hydrogenase (Hmd). Inorganic Chemistry, 2011, 50, 5249-5257.	4.0	39
18	NNN-Ruthenium Catalysts for the Synthesis of Pyridines, Quinolines, and Pyrroles by Acceptorless Dehydrogenative Condensation. Organometallics, 2018, 37, 2386-2394.	2.3	38

#	Article	IF	CITATIONS
19	Engineering proteinosomes with renewable predatory behaviour towards living organisms. Materials Horizons, 2020, 7, 157-163.	12.2	36
20	Highly Regio―and Stereoselective Hydrosilylation of Alkynes Catalyzed by Tridentate Cobalt Complexes. Chemistry - an Asian Journal, 2019, 14, 2694-2703.	3.3	29
21	Ruthenium complexes bearing an unsymmetrical pincer ligand with a 2-hydroxypyridylmethylene fragment: active catalysts for transfer hydrogenation of ketones. Dalton Transactions, 2016, 45, 4828-4834.	3.3	26
22	Pyridyl-Substituted Indenyl Ruthenium Complexes: Synthesis, Structures, and Reactivities. Organometallics, 2010, 29, 3418-3430.	2.3	24
23	Synthesis, Reactivity, and Catalytic Transfer Hydrogenation Activity of Ruthenium Complexes Bearing NNN Tridentate Ligands: Influence of the Secondary Coordination Sphere. ACS Omega, 2017, 2, 3406-3416.	3.5	23
24	Bidentate Ru(<scp>ii</scp>)-NC complexes as catalysts for the dehydrogenative reaction from primary alcohols to carboxylic acids. Dalton Transactions, 2019, 48, 8826-8834.	3.3	23
25	Highly Regio- and Stereoselective Tridentate N ^C NN Cobalt-Catalyzed 1,3-Diyne Hydrosilylation. Organometallics, 2019, 38, 4341-4350.	2.3	22
26	[Fe]â€Hydrogenase Models Featuring Acylmethylpyridinyl Ligands. Angewandte Chemie, 2010, 122, 7674-7677.	2.0	21
27	A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (<i>E</i>)-Alkenes with Ethanol. Organometallics, 2020, 39, 862-869.	2.3	21
28	Reactions of a Trinuclear Ruthenium Complex Derived from 3-(2-Pyridyl)indene with Diphenylacetylene and Phenylacetylene: Insertion of Alkynes into the Ruâ^'C bond. Organometallics, 2011, 30, 676-683.	2.3	20
29	Dielsâ°'Alder Reactions of Benzyne with Indenyl Iron Complexes. Organometallics, 2004, 23, 6225-6230.	2.3	19
30	A Pyridinol Acyl Cofactor in the Active Site of [Fe]â€hydrogenase Evidenced by the Reactivity of Model Complexes. Chemistry - A European Journal, 2012, 18, 11528-11530.	3.3	18
31	Morphology controllable fabrication of poly-o-phenylenediamine microstructures tuned by the ionic strength and their applications in pH sensors. Journal of Materials Chemistry A, 2014, 2, 19208-19213.	10.3	17
32	Bis(phosphine)cobalt-Catalyzed Highly Regio- and Stereoselective Hydrosilylation of 1,3-Diynes. Organometallics, 2020, 39, 4437-4443.	2.3	17
33	Bidentate Ru(II)â€NC Complexes as Catalysts for α â€Alkylation of Unactivated Amides and Esters. ChemCatChem, 2019, 11, 4841-4847.	3.7	16
34	Reversible Dimerization of Mononuclear Models of [Fe]â∈Hydrogenase. Chemistry - A European Journal, 2013, 19, 6221-6224.	3.3	15
35	Ureate Titanium Catalysts for Hydroaminoalkylation: Using Ligand Design to Increase Reactivity and Utility. ACS Catalysis, 2021, 11, 4550-4560.	11.2	15
36	Reactions of Pyridyl Side Chain Functionalized Indenes with Ru3(CO)12. European Journal of Inorganic Chemistry, 2008, 2008, 1854-1864.	2.0	13

#	Article	IF	Citations
37	Cobalt-Catalyzed (<i>E</i>)-Selective Hydrosilylation of 1,3-Enynes for the Synthesis of 1,3-Dienylsilanes. Organometallics, 2021, 40, 2070-2080.	2.3	12
38	Alkylation of Aromatic Amines with Trialkyl Amines Catalyzed by a Defined Iridium Complex with a 2-Hydroxypyridylmethylene Fragment. Organometallics, 2019, 38, 2218-2226.	2.3	11
39	Carbolong Chemistry: Planar CCCCX-Type (X = N, O, S) Pentadentate Chelates by Formal [3+1] Cycloadditions of Metalla-Azirines with Terminal Alkynes. CCS Chemistry, 2021, 3, 758-763.	7.8	11
40	The First <scp>OCCCO</scp> Pentadentate Chelates: Osmium Mediated Stepwise Oxidations of Terminal Alkynes by Pyridine <scp><i>N</i>â€Oxide</scp> . Chinese Journal of Chemistry, 2020, 38, 1273-1279.	4.9	10
41	Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene. Chemical Communications, 2021, 57, 8464-8467.	4.1	9
42	A <scp>Oneâ€Pot</scp> Strategy for the Synthesis of <scp><i> 2</i> 2 3€Substituted</scp> Rhodaâ€and <scp> ridaâ€Carbolong</scp> Complexes. Chinese Journal of Chemistry, 2022, 40, 1777-1784.	4.9	8
43	Ruthenium NNN complexes with a 2â€hydroxypyridylmethylene fragment for transfer hydrogenation of ketones. Applied Organometallic Chemistry, 2018, 32, e4100.	3.5	7
44	Synthesis and Reactivity Studies of Irida-carbolong Complexes. Acta Chimica Sinica, 2021, 79, 71.	1.4	6
45	Intramolecular cyclization of a diruthenium complex: insight into the mechanism of heteroatom-directed intramolecular C–H/olefin coupling reactions. Dalton Transactions, 2015, 44, 12507-12510.	3.3	5
46	Boosting the performance and stability of inverted perovskite solar cells by using a carbolong derivative to modulate the cathode interface. Materials Chemistry Frontiers, 0, , .	5.9	5
47	Reversible CO Dissociation of Tricarbonyl Iodide [Fe]-Hydrogenase Models Ligating Acylmethylpyridyl Ligands. Organometallics, 2016, 35, 2993-2998.	2.3	3
48	Synthesis of Diruthenium Complexes Derived from Pyridyl-Substituted Indenes. Organometallics, 2017, 36, 1066-1072.	2.3	3
49	Unusual C–O bond cleavage of aromatic ethers in ruthenium complexes bearing a 2-alkoxypyridyl fragment. Dalton Transactions, 2019, 48, 13614-13621.	3.3	1
50	Regioselectivity in Câ€"H activation: Reactions of N-heterocyclic indenes with Ru3(CO)12. Polyhedron, 2019, 158, 311-315.	2.2	0