
Shuxin Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6056504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoâ€photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 2012, 24, 229-251.	11.1	3,375
2	Ultrathin W ₁₈ O ₄₉ Nanowires with Diameters below 1â€nm: Synthesis, Nearâ€Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2012, 51, 2395-2399.	7.2	492
3	Nanometals for Solarâ€toâ€Chemical Energy Conversion: From Semiconductorâ€Based Photocatalysis to Plasmonâ€Mediated Photocatalysis and Photoâ€Thermocatalysis. Advanced Materials, 2016, 28, 6781-6803.	11.1	471
4	Recent advances in TiO ₂ -based photocatalysis. Journal of Materials Chemistry A, 2014, 2, 12642.	5.2	418
5	Photothermal Conversion of CO ₂ into CH ₄ with H ₂ over Groupâ€VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angewandte Chemie - International Edition, 2014, 53, 11478-11482.	7.2	385
6	Constructing Solid–Gas-Interfacial Fenton Reaction over Alkalinized-C ₃ N ₄ Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm. Journal of the American Chemical Society, 2016, 138, 13289-13297.	6.6	364
7	Surface-Alkalinization-Induced Enhancement of Photocatalytic H ₂ Evolution over SrTiO ₃ -Based Photocatalysts. Journal of the American Chemical Society, 2012, 134, 1974-1977.	6.6	330
8	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304
9	In situ surface alkalinized g-C ₃ N ₄ toward enhancement of photocatalytic H ₂ evolution under visible-light irradiation. Journal of Materials Chemistry A, 2016, 4, 2943-2950.	5.2	247
10	Drastic Layerâ€Numberâ€Dependent Activity Enhancement in Photocatalytic H ₂ Evolution over <i>n</i> MoS ₂ /CdS (<i>n</i> ≥ 1) Under Visible Light. Advanced Energy Materials, 2015, 5, 1402279.	10.2	239
11	Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In ₂ O _{3â~} <i>_x</i> Nanosheets with Bifunctional Oxygen Vacancies. Advanced Materials, 2020, 32, e1903915.	11.1	208
12	Targeting Activation of CO ₂ and H ₂ over Ruâ€Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO ₂ Methanation in Flowâ€Type System. Advanced Energy Materials, 2017, 7, 1601657.	10.2	193
13	Co-ZIF-9/TiO ₂ nanostructure for superior CO ₂ photoreduction activity. Journal of Materials Chemistry A, 2016, 4, 15126-15133.	5.2	180
14	Photocatalytic CO ₂ conversion over alkali modified TiO ₂ without loading noble metal cocatalyst. Chemical Communications, 2014, 50, 11517-11519.	2.2	162
15	In situ synthesis of ordered mesoporous Co-doped TiO ₂ and its enhanced photocatalytic activity and selectivity for the reduction of CO ₂ . Journal of Materials Chemistry A, 2015, 3, 9491-9501.	5.2	155
16	Synergistic Activity of Co and Fe in Amorphous Co <i>x</i> –Fe–B Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40333-40343.	4.0	145
17	High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. Journal of Materials Chemistry, 2011, 21, 12852.	6.7	131
18	Band-structure-controlled BiO(ClBr) _{(1â^'x)/2} I _x solid solutions for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 8123-8132.	5.2	114

SHUXIN OUYANG

#	Article	IF	CITATIONS
19	Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production. Journal of Materials Chemistry A, 2013, 1, 4221.	5.2	106
20	Porous-structured Cu ₂ 0/TiO ₂ nanojunction material toward efficient CO ₂ photoreduction. Nanotechnology, 2014, 25, 165402.	1.3	86
21	Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO ₂ Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid. ACS Catalysis, 2020, 10, 4726-4736.	5.5	84
22	Solarâ€Driven Water–Gas Shift Reaction over CuO _{<i>x</i>} /Al ₂ O ₃ with 1.1 % of Lightâ€ŧoâ€Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7708-7712.	7.2	78
23	Mechanism of photocatalytic activities in Cr-doped SrTiO3 under visible-light irradiation: an insight from hybrid density-functional calculations. Physical Chemistry Chemical Physics, 2012, 14, 1876.	1.3	73
24	Co and Fe Codoped WO _{2.72} as Alkalineâ€Solutionâ€Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solarâ€Toâ€Hydrogen Efficiency of 16.9%. Advanced Science, 2019, 6, 1900465.	5.6	72
25	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catalysis Science and Technology, 2018, 8, 1686-1695.	2.1	70
26	Subsurface oxygen defects electronically interacting with active sites on In2O3 for enhanced photothermocatalytic CO2 reduction. Nature Communications, 2022, 13, .	5.8	70
27	Fabrication of Black In ₂ O ₃ with Dense Oxygen Vacancy through Dual Functional Carbon Doping for Enhancing Photothermal CO ₂ Hydrogenation. Advanced Functional Materials, 2021, 31, 2100908.	7.8	66
28	Photocatalytic reactivity of {121} and {211} facets of brookite TiO ₂ crystals. Journal of Materials Chemistry A, 2015, 3, 2331-2337.	5.2	54
29	Bifunctional-Nanotemplate Assisted Synthesis of Nanoporous SrTiO ₃ Photocatalysts Toward Efficient Degradation of Organic Pollutant. ACS Applied Materials & Interfaces, 2014, 6, 22726-22732.	4.0	50
30	Fabricating a Au@TiO ₂ Plasmonic System To Elucidate Alkali-Induced Enhancement of Photocatalytic H ₂ Evolution: Surface Potential Shift or Methanol Oxidation Acceleration?. ACS Catalysis, 2018, 8, 4266-4277.	5.5	46
31	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Advanced Functional Materials, 2019, 29, 1901024.	7.8	44
32	Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO ₃ to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 2016, 8, 9506-9513.	4.0	42
33	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H ₂ O ₂ production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chemical Communications, 2019, 55, 13279-13282.	2.2	37
34	Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis. Applied Catalysis B: Environmental, 2019, 259, 118027.	10.8	35
35	Surfactant-Free Synthesis of Single Crystalline SnS ₂ and Effect of Surface Atomic Structure on the Photocatalytic Property. International Journal of Photoenergy, 2014, 2014, 1-7.	1.4	31
36	Solar light-induced injection of hot electrons and photocarriers for synergistically enhanced photothermocatalysis over Cu-Co/SrTiO3 catalyst towards boosting CO hydrogenation into C2–C4 hydrocarbons. Applied Catalysis B: Environmental, 2022, 310, 121063.	10.8	27

SHUXIN OUYANG

#	Article	IF	CITATIONS
37	Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Applied Catalysis B: Environmental, 2021, 298, 120551.	10.8	26
38	Charge localization to optimize reactant adsorption on KCu7S4/CuO interfacial structure toward selective CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 298, 120531.	10.8	25
39	Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction. Catalysis Science and Technology, 2019, 9, 2125-2131.	2.1	21
40	Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method. APL Materials, 2015, 3, .	2.2	20
41	Electronically Activated Fe ₅ C ₂ via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catalysis, 2022, 12, 5316-5326.	5.5	19
42	Light-driven low-temperature syngas production from CH ₃ OH and H ₂ O over a Pt@SrTiO ₃ photothermal catalyst. Catalysis Science and Technology, 2018, 8, 2515-2518.	2.1	18
43	Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration. Nano Research, 2018, 11, 4735-4743.	5.8	18
44	Solarâ€Driven Water–Gas Shift Reaction over CuO x /Al 2 O 3 with 1.1 % of Lightâ€toâ€Energy Storage. Angewandte Chemie, 2019, 131, 7790-7794.	1.6	17
45	A Metalâ€Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. Solar Rrl, 2021, 5, 2000488.	3.1	16
46	Costâ€Efficient Photovoltaicâ€Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron–Molybdenum Oxides for Potential Largeâ€Scale Hydrogen Production. Small, 2021, 17, e2102222.	5.2	16
47	Effect of band structure on the hot-electron transfer over Au photosensitized brookite TiO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 3409-3412.	1.3	14
48	Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. Chemical Research in Chinese Universities, 2020, 36, 1006-1012.	1.3	14
49	CoAl-layered double hydroxide nanosheet-based fluorescence assay for fast DNA detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118618.	2.0	13
50	Photocarrier-assisted photothermocatalysis of Fischer–Tropsch synthesis for the enhanced yield of C2–C4 hydrocarbons over a Co/SrTiO ₃ catalyst. Catalysis Science and Technology, 2021, 11, 7029-7034.	2.1	12
51	Modulation of an intermediate layer between NiCoP and Ni foam substrate in a microwire array electrode for enhancing the hydrogen-evolution reaction. Chemical Communications, 2020, 56, 4990-4993.	2.2	10
52	Structural and Componential Engineering of Co ₂ P&CoP@N–C Nanoarrays for Energy-Efficient Hydrogen Production from Water Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 56064-56072.	4.0	7
53	Photoassisted fabrication of zinc indium oxide/oxysulfide composite for enhanced photocatalytic H ₂ evolution under visible-light irradiation. Science and Technology of Advanced Materials, 2012, 13, 055001.	2.8	5
54	Photothermal Catalysis: Targeting Activation of CO ₂ and H ₂ over Ru‣oaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO ₂ Methanation in Flowâ€Type System (Adv. Energy Mater. 5/2017). Advanced Energy Materials, 2017, 7, .	10.2	5

SHUXIN OUYANG

#	Article	IF	CITATIONS
55	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO x @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO 2 Reduction System with Solarâ€toâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2000116.	3.1	5
56	Synergetic modulation of surface alkali and oxygen vacancy over SrTiO3 for the CO2 photodissociation. Nanotechnology, 2022, 33, 085401.	1.3	3
57	Preface for Special Topic: Photocatalysis. APL Materials, 2015, 3, 103801.	2.2	О
58	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO _{<i>x</i>} @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO ₂ Reduction System with Solarâ€toâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2070072.	3.1	0