Sonia Jemli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605614/publications.pdf

Version: 2024-02-01

840776 713466 26 458 11 21 h-index citations g-index papers 26 26 26 672 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Biocatalysts: application and engineering for industrial purposes. Critical Reviews in Biotechnology, 2016, 36, 246-258.	9.0	145
2	A \hat{l}^2 -cyclodextrin glycosyltransferase from a newly isolated Paenibacillus pabuli US132 strain: Purification, properties and potential use in bread-making. Biochemical Engineering Journal, 2007, 34, 44-50.	3.6	44
3	Make it clean, make it safe: A review on virus elimination via adsorption. Chemical Engineering Journal, 2021, 412, 128682.	12.7	40
4	Heterologous expression, secretion and characterization of the Geobacillus thermoleovorans US105 type I pullulanase. Applied Microbiology and Biotechnology, 2008, 78, 473-481.	3.6	39
5	A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: Recombinant expression, characterization and application in paper biobleaching. International Journal of Biological Macromolecules, 2020, 164, 808-817.	7.5	39
6	The Cyclodextrin Glycosyltransferase of Paenibacillus pabuli US132 Strain: Molecular Characterization and Overproduction of the Recombinant Enzyme. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-9.	3.0	17
7	Highlight on the expression and the function of a novel MnSOD from diploid wheat (T. monococcum) in response to abiotic stress and heavy metal toxicity. Plant Physiology and Biochemistry, 2019, 142, 384-394.	5.8	17
8	Cloning and Sequencing of an Original Gene Encoding a Maltogenic Amylase from Bacillus sp. US149 Strain and Characterization of the Recombinant Activity. Molecular Biotechnology, 2008, 38, 211-219.	2.4	16
9	Localization and expression analysis of a novel catalase from Triticum monococcum TmCAT1 involved in response to different environmental stresses. Plant Physiology and Biochemistry, 2019, 139, 366-378.	5.8	16
10	A novel Vip3Aa16-Cry1Ac chimera toxin: Enhancement of toxicity against Ephestia kuehniella, structural study and molecular docking. International Journal of Biological Macromolecules, 2018, 117, 752-761.	7.5	15
11	Improvement of cyclodextrin glycosyltransferase (CGTase) production by recombinant Escherichia coli pAD26 immobilized on the cotton. Biologia (Poland), 2012, 67, 1049-1055.	1.5	11
12	Aspergillus Oryzae S2 $\hat{1}$ ±-Amylase Domain C Involvement in Activity and Specificity: In Vivo Proteolysis, Molecular and Docking Studies. PLoS ONE, 2016, 11, e0153868.	2.5	11
13	Mutations affecting the activity of the cyclodextrin glucanotransferase of Paenibacillus pabuli US132: insights into the low hydrolytic activity of cyclodextrin glucanotransferases. Biologia (Poland), 2012, 67, 636-643.	1.5	7
14	Superoxide dismutase (SOD) family in durum wheat: promising candidates for improving crop resilience. Protoplasma, 2023, 260, 145-158.	2.1	7
15	Excretory overexpression of Paenibacillus pabuli US132 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: gene cloning and optimization of the culture conditions using experimental design. Biologia (Poland), 2011, 66, 945-953.	1.5	6
16	Modifing Aspergillus Oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization. International Journal of Biological Macromolecules, 2018, 117, 483-492.	7.5	6
17	Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS ONE, 2022, 17, e0266971.	2.5	5
18	US132 Cyclodextrin Glucanotransferase Engineering by Random Mutagenesis for an Anti-Staling Purpose. Molecular Biotechnology, 2016, 58, 551-557.	2.4	3

#	Article	IF	CITATIONS
19	Molecular characterization of Cry1D-133 toxin from Bacillus thuringiensis strain HD133 and its toxicity against Spodoptera littoralis. International Journal of Biological Macromolecules, 2018, 112, 1-6.	7.5	3
20	In Silico Molecular Analysis and Docking of Potent Antimicrobial Peptides Against MurE Enzyme of Methicillin Resistant Staphylococcus Aureus. International Journal of Peptide Research and Therapeutics, 2021, 27, 1253-1263.	1.9	3
21	Valorization of Potato Peels Starch for Efficient βâ€Cyclodextrin Production and Purification through an Ecoâ€Friendly Process. Starch/Staerke, 2022, 74, .	2.1	3
22	CLONING AND SEQUENCING OF THE α-AMYLASE GENE FROMBACILLUS SUBTILISUS 116 STRAIN ENCODING AN ENZYME CLOSELY IDENTICAL TO THAT FROMBACILLUS AMYLOLIQUEFACIENSBUT DISTINCT IN THERMAL STABILITY. Journal of Food Biochemistry, 2010, 34, 263-282.	2.9	2
23	Improved stability and reusability of cotton-immobilized recombinant Escherichia coli producing US132 Cyclodextrin Glucanotransferase. Annals of Microbiology, 2015, 65, 383-391.	2.6	1
24	Localization and in silico study of the vegetative insecticidal proteins Vip2S-Vip1S of Bacillus thuringiensis. International Journal of Biological Macromolecules, 2016, 91, 510-517.	7.5	1
25	Highlight on mutations affecting the US132 cyclodextrin glucanotransferase binding specificity, thermal stability, and anti-staling activity. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112375.	5.0	1
26	Molecular and structural characterization of a novel Cry1D toxin from Bacillus thuringiensis with high toxicity to Spodoptera littoralis (Lepidoptera: Noctuidae). International Journal of Biological Macromolecules, 2019, 126, 969-976.	7.5	0