Elisa M Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6055758/publications.pdf

Version: 2024-02-01

75	4,404 citations	172207	123241
papers	citations	h-index	g-index
79	79	79	7392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stabilizing the heavily-doped and metallic phase of MoS ₂ monolayers with surface functionalization. 2D Materials, 2022, 9, 015033.	2.0	5
2	(Invited) Controlling and Using Optoelectronic Properties of MoS ₂ and WS ₂ Monolayers. ECS Meeting Abstracts, 2022, MA2022-01, 863-863.	0.0	O
3	Suppressing Auger Recombination in Multiply Excited Colloidal Silicon Nanocrystals with Ligand-Induced Hole Traps. Journal of Physical Chemistry C, 2021, 125, 2565-2574.	1.5	7
4	Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7, .	4.7	41
5	Ammonia Generation from 2D MoS2 Catalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1289-1289.	0.0	O
6	(Invited) Controlling Monolayer and Few-Layer MoS2 and WS2 Optoelectronic and Catalytic Properties. ECS Meeting Abstracts, 2021, MA2021-01, 678-678.	0.0	0
7	Insights into the Dynamic Interfacial and Bulk Composition of Copper-Modified, Hydrogen-Alloyed, Palladium Nanocubes under Electrocatalytic Conditions. Journal of Physical Chemistry C, 2021, 125, 15487-15495.	1.5	1
8	Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. Nano Letters, 2021, 21, 9131-9137.	4.5	15
9	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	15.6	69
10	(Invited) N2 Reduction to NH3 Generation Using Transition Metal-Based Catalysts. ECS Meeting Abstracts, 2021, MA2021-02, 1540-1540.	0.0	0
11	Tuning Electrochemical Nitrogen Reduction on Metallic, 2D-MoS2 through Covalent Functionalization. ECS Meeting Abstracts, 2021, MA2021-02, 1541-1541.	0.0	0
12	Probing Activities of Individual Catalytic Nanoflakes by Tunneling Mode of Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2021, 125, 25525-25532.	1.5	7
13	Covalent Functionalization of Nickel Phosphide Nanocrystals with Aryl-Diazonium Salts. Chemistry of Materials, 2021, 33, 9652-9665.	3.2	9
14	Plasmonic Hot Hole Transfer in Gold Nanoparticle-Decorated Transition Metal Dichalcogenide Nanosheets. ACS Photonics, 2020, 7, 197-202.	3.2	21
15	Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity. Journal of Physical Chemistry Letters, 2020, 11, 99-107.	2.1	11
16	Interference Provides Clarity: Direct Observation of 2D Materials at Fluid–Fluid Interfaces. ACS Nano, 2020, 14, 777-790.	7.3	12
17	Spatially Resolved Persistent Photoconductivity in MoS ₂ –WS ₂ Lateral Heterostructures. ACS Nano, 2020, 14, 14080-14090.	7.3	36
18	Strategic Design of MoO ₂ Nanoparticles Supported by Carbon Nanowires for Enhanced Electrocatalytic Nitrogen Reduction. ACS Energy Letters, 2020, 5, 3237-3243.	8.8	43

#	Article	IF	CITATIONS
19	Decoupling Kinetics and Thermodynamics of Interfacial Catalysis at a Chemically Modified Black Silicon Semiconductor Photoelectrode. ACS Energy Letters, 2020, 5, 1848-1855.	8.8	8
20	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
21	Photoinduced charge transfer in transition metal dichalcogenide heterojunctions – towards next generation energy technologies. Energy and Environmental Science, 2020, 13, 2684-2740.	15.6	67
22	Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide. Nanoscale, 2020, 12, 8344-8354.	2.8	11
23	(Invited) Controlling Monolayer and Few-Layer MoS2 and WS2 Optoelectronic and Catalytic Properties. ECS Meeting Abstracts, 2020, MA2020-01, 826-826.	0.0	0
24	(Invited) NH3 Generation from 2D MoS2 Catalysts. ECS Meeting Abstracts, 2020, MA2020-01, 1818-1818.	0.0	0
25	Applying Dynamic Strain on Thin Oxide Films Immobilized on a Pseudoelastic Nickel-Titanium Alloy. Journal of Visualized Experiments, 2020, , .	0.2	0
26	Atomically Thin Metal Sulfides. Journal of the American Chemical Society, 2019, 141, 12121-12127.	6.6	13
27	Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS ₂ nanosheets. Nanoscale Horizons, 2019, 4, 619-624.	4.1	46
28	Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbl ₃ Nanocrystal Films. Advanced Materials, 2019, 31, e1902250.	11.1	66
29	Pseudocapacitive Storage in Nanolayered Ti ₂ NT _{<i>x</i>} MXene Using Mg-lon Electrolyte. ACS Applied Nano Materials, 2019, 2, 2785-2795.	2.4	92
30	Electrocatalytic and Optoelectronic Characteristics of the Two-Dimensional Titanium Nitride Ti ₄ N ₃ T _x MXene. ACS Applied Materials & Diterfaces, 2019, 11, 11812-11823.	4.0	87
31	Intrinsic and Extrinsically Limited Thermoelectric Transport within Semiconducting Singleâ€Walled Carbon Nanotube Networks. Advanced Electronic Materials, 2019, 5, 1800910.	2.6	29
32	Unique interfacial thermodynamics of few-layer 2D MoS ₂ for (photo)electrochemical catalysis. Energy and Environmental Science, 2019, 12, 1648-1656.	15.6	25
33	Enhanced photoredox activity of CsPbBr3 nanocrystals by quantitative colloidal ligand exchange. Journal of Chemical Physics, 2019, 151, 204305.	1.2	52
34	Pseudocapacitive Storage in Nanolayered Ti2NTxmxene Using Mg-Ion Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Electrocatalytic and Optoelectronic Characteristics of Exfoliated Two-Dimensional Titanium Nitride Ti4N3Tx mxene. ECS Meeting Abstracts, 2019, , .	0.0	1
36	Charge Generation in Monolayer Transition Metal Dichalcogenides. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	Citations
37	(Invited) Tuning Optoelectronic Properties of Transition Metal Dichalcogenides for Hydrogen Generation. ECS Meeting Abstracts, 2019, , .	0.0	O
38	(Invited) Organic/Inorganic Hybrid Interfaces with Swcnts for Energy Harvesting and Conversion. ECS Meeting Abstracts, 2019, , .	0.0	0
39	(Invited) Triplet Energy Transfer at Interfaces between Molecules and Perovskite or Metal Chalcogenide Nanostructures. ECS Meeting Abstracts, 2019, , .	0.0	0
40	Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe ₂ Films. Journal of Physical Chemistry C, 2018, 122, 6539-6545.	1.5	23
41	Growth of amorphous and epitaxial ZnSiP ₂ –Si alloys on Si. Journal of Materials Chemistry C, 2018, 6, 2696-2703.	2.7	18
42	Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS ₂ Nanosheets via Covalent Functionalization. Journal of the American Chemical Society, 2018, 140, 441-450.	6.6	241
43	<i>n</i> -Type PbSe Quantum Dots via Post-Synthetic Indium Doping. Journal of the American Chemical Society, 2018, 140, 13753-13763.	6.6	28
44	Protected Metallic MoS2 Nanosheets Outlast Pristine Metallic MoS2 Nanosheets for Hydrogen Evolution Reaction. ECS Meeting Abstracts, 2018, , .	0.0	0
45	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	19.8	376
46	Semiconductor-to-Metal Transition in Rutile TiO ₂ Induced by Tensile Strain. Chemistry of Materials, 2017, 29, 2173-2179.	3.2	19
47	Anion photoelectron spectroscopy of deprotonatedortho-,meta-, andpara-methylphenol. Journal of Chemical Physics, 2017, 146, 074302.	1.2	11
48	Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nature Communications, 2017, 8, 15257.	5.8	230
49	Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. ChemSusChem, 2017, 10, 767-773.	3.6	27
50	High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8, 4960-4966.	2.1	111
51	Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi ₂ Se ₃ Single Crystals. Chemistry of Materials, 2017, 29, 8472-8477.	3.2	8
52	Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots. Journal of the American Chemical Society, 2017, 139, 10382-10394.	6.6	58
53	Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nature Communications, 2017, 8, 1722.	5.8	107
54	ZnSiP2 Thin Film Growth for Si-Based Tandem Photovoltaics. , 2017, , .		O

#	Article	lF	CITATIONS
55	Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nature Energy, $2016,1,\ldots$	19.8	270
56	Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs ₂ Snl ₆ and Cs ₂ Tel ₆ . Journal of the American Chemical Society, 2016, 138, 8453-8464.	6.6	415
57	Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. ACS Nano, 2016, 10, 3302-3311.	7.3	118
58	Effect of host-mobility dependent carrier scattering on thermoelectric power factors of polymer composites. Nano Energy, 2016, 19, 128-137.	8.2	25
59	Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots. ACS Nano, 2015, 9, 8157-8164.	7.3	103
60	Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles <i>via</i> Controllable Cation Exchange. ACS Nano, 2015, 9, 7151-7163.	7.3	97
61	Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells. Scientific Reports, 2015, 5, 9945.	1.6	205
62	Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science, 2015, 350, 1061-1065.	6.0	118
63	Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with <i>in Situ</i> Halide Passivation for Quantum Dot Solar Cells. ACS Nano, 2014, 8, 614-622.	7.3	256
64	Substrate-controlled band positions in CH ₃ NH ₃ PbI ₃ perovskite films. Physical Chemistry Chemical Physics, 2014, 16, 22122-22130.	1.3	177
65	PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere. Nano Letters, 2014, 14, 6010-6015.	4.5	212
66	Electronic States of the Quasilinear Molecule Propargylene (HCCCH) from Negative Ion Photoelectron Spectroscopy. Journal of the American Chemical Society, 2014, 136, 10361-10372.	6.6	18
67	Control of Plasmonic and Interband Transitions in Colloidal Indium Nitride Nanocrystals. Journal of the American Chemical Society, 2013, 135, 14142-14150.	6.6	77
68	New view of the ICN A continuum using photoelectron spectroscopy of ICNâ ⁻ '. Journal of Chemical Physics, 2012, 136, 044313.	1.2	11
69	Ground and low-lying excited states of propadienylidene (H2C=C=C:) obtained by negative ion photoelectron spectroscopy. Journal of Chemical Physics, 2012, 136, 134312.	1.2	18
70	Dynamic Mapping of CN Rotation Following Photoexcitation of ICN $\sin^2(\sin x)$. Angewandte Chemie International Edition, 2012, 51, 2651-2653.	7.2	6
71	Solvent-mediated charge redistribution in photodissociation of IBrâ^ and IBrâ^ (CO2). Journal of Chemical Physics, 2011, 134, 184311.	1.2	10

Solvent-Mediated Electron Hopping: Long-Range Charge Transfer in IBr ^{â^'} (CO) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 62 To

#	Article	IF	CITATIONS
73	Photoelectron spectroscopy of small IBrâ^'(CO2)nâ€^(n=–3) cluster anions. Journal of Chemical Physics, 2009, 131, 064304.	1.2	23
74	Alkylation Effects on Strong Collisions of Highly Vibrationally Excited Alkylated Pyridines with CO2â€. Journal of Physical Chemistry A, 2007, 111, 4073-4080.	1.1	8
75	Relaxation Dynamics of Highly Vibrationally Excited Picoline Isomers (Evib = 38 300 cm-1) with CO2:  The Role of State Density in Impulsive Collisions. Journal of Physical Chemistry A, 2006, 110, 3266-3272.	1.1	16