
Blaise L Tardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6055509/publications.pdf Version: 2024-02-01

RINISE | TADDY

#	Article	IF	CITATIONS
1	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, 11, 1105-1111.	31.5	337
2	Nanocellulose–surfactant interactions. Current Opinion in Colloid and Interface Science, 2017, 29, 57-67.	7.4	134
3	Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. Journal of Controlled Release, 2017, 262, 139-150.	9.9	123
4	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	3.5	120
5	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	21.0	117
6	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	47.7	113
7	Targeted Therapy against Metastatic Melanoma Based on Selfâ€Assembled Metalâ€Phenolic Nanocomplexes Comprised of Green Tea Catechin. Advanced Science, 2019, 6, 1801688.	11.2	109
8	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	47.7	102
9	Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 2021, 23, 6698-6760.	9.0	93
10	Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. Journal of Membrane Science, 2013, 427, 422-430.	8.2	81
11	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	12.2	81
12	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Science Advances, 2021, 7, eabh3482.	10.3	74
13	Supramolecular assemblies of lignin into nano- and microparticles. MRS Bulletin, 2017, 42, 371-378.	3.5	70
14	Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chemistry, 2018, 20, 1335-1344.	9.0	64
15	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	21.0	64
16	Influence of Ionic Strength on the Deposition of Metal–Phenolic Networks. Langmuir, 2017, 33, 10616-10622.	3.5	61
17	Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors. Biomacromolecules, 2018, 19, 2931-2943.	5.4	61
18	Boronate–Phenolic Network Capsules with Dual Response to Acidic pH and <i>cis</i> â€Điols. Advanced Healthcare Materials, 2015, 4, 1796-1801.	7.6	60

BLAISE L TARDY

#	Article	IF	CITATIONS
19	Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification. Scientific Reports, 2016, 6, 29206.	3.3	50
20	Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry and Engineering, 2019, 7, 6287-6294.	6.7	49
21	Asymmetrical coffee rings from cellulose nanocrystals and prospects in art and design. Cellulose, 2019, 26, 491-506.	4.9	45
22	Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials, 2020, 235, 119784.	11.4	45
23	Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces. Langmuir, 2018, 34, 5759-5771.	3.5	44
24	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
25	Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization. Journal of the American Chemical Society, 2021, 143, 17040-17046.	13.7	41
26	Optical Properties of Selfâ€Assembled Cellulose Nanocrystals Films Suspended at Planar–Symmetrical Interfaces. Small, 2017, 13, 1702084.	10.0	39
27	Self-Assembled Stimuli-Responsive Polyrotaxane Core–Shell Particles. Biomacromolecules, 2014, 15, 53-59.	5.4	38
28	Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating. Advanced Functional Materials, 2019, 29, 1808518.	14.9	37
29	How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules, 2019, 20, 4361-4369.	5.4	36
30	Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Scientific Reports, 2018, 8, 5555.	3.3	35
31	Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. Journal of Materials Chemistry A, 2019, 7, 15309-15319.	10.3	35
32	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal–Phenolic Network Films. Biomacromolecules, 2019, 20, 1421-1428.	5.4	35
33	Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 2657-2665.	5.4	34
34	Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small, 2018, 14, e1801256.	10.0	32
35	Soft cellulose II nanospheres: sol–gel behaviour, swelling and material synthesis. Nanoscale, 2019, 11, 17773-17781.	5.6	30
36	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. ACS Applied Materials & Interfaces, 2016, 8, 7449-7455.	8.0	28

BLAISE L TARDY

#	Article	lF	CITATIONS
37	Comparative Screening of the Structural and Thermomechanical Properties of FDM Filaments Comprising Thermoplastics Loaded with Cellulose, Carbon and Glass Fibers. Materials, 2020, 13, 422.	2.9	24
38	Guiding Bacterial Activity for Biofabrication of Complex Materials <i>via</i> Controlled Wetting of Superhydrophobic Surfaces. ACS Nano, 2020, 14, 12929-12937.	14.6	23
39	Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Current Medicinal Chemistry, 2019, 26, 6107-6131.	2.4	23
40	Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. Nanoscale, 2016, 8, 15589-15596.	5.6	22
41	Use of Biogenic Silica in Porous Alginate Matrices for Sustainable Fertilization with Tailored Nutrient Delivery. ACS Sustainable Chemistry and Engineering, 2018, 6, 2716-2723.	6.7	22
42	Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules, 2021, 22, 2067-2080.	5.4	19
43	Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy. Polymer, 2016, 102, 333-341.	3.8	18
44	Morphology-Controlled Synthesis of Colloidal Polyphenol Particles from Aqueous Solutions of Tannic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 16985-16990.	6.7	18
45	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. Nanoscale, 2014, 6, 13416-13420.	5.6	17
46	Biobased aerogels with different surface charge as electrolyte carrierÂmembranes in quantum dot-sensitized solar cell. Cellulose, 2018, 25, 3363-3375.	4.9	17
47	Hybrid Living Capsules Autonomously Produced by Engineered Bacteria. Advanced Science, 2021, 8, 2004699.	11.2	17
48	Thermal Transition of Bimetallic Metal–Phenolic Networks to Biomassâ€Derived Hierarchically Porous Nanofibers. Chemistry - an Asian Journal, 2018, 13, 972-976.	3.3	16
49	Surface Activity and Foaming Capacity of Aggregates Formed between an Anionic Surfactant and Non-Cellulosics Leached from Wood Fibers. Biomacromolecules, 2019, 20, 2286-2294.	5.4	15
50	Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 2021, 251, 117073.	10.2	15
51	Biofilms in plant-based fermented foods: Formation mechanisms, benefits and drawbacks on quality and safety, and functionalization strategies. Trends in Food Science and Technology, 2021, 116, 940-953.	15.1	15
52	Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles. ACS Nano, 2021, 15, 19712-19721.	14.6	14
53	Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers, 2022, 284, 119198.	10.2	12
54	Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase. Green Chemistry, 2022, 24, 5604-5613.	9.0	12

BLAISE L TARDY

#	ARTICLE	IF	CITATIONS
55	Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation. Scientific Reports, 2017, 7, 45112.	3.3	11
56	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	10.3	11
57	Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 2022, 292, 119681.	10.2	10
58	Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017, 18, 2118-2127.	5.4	9
59	Charge tunable thin-film composite membranes by gamma-ray triggered surface polymerization. Scientific Reports, 2017, 7, 4426.	3.3	9
60	Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Scientific Reports, 2022, 12, 2071.	3.3	9
61	Effect of particle surface corrugation on colloidal interactions. Journal of Colloid and Interface Science, 2020, 579, 794-804.	9.4	8
62	Insights into Free Volume Variations across Ion-Exchange Membranes upon Mixed Solvents Uptake by Small and Ultrasmall Angle Neutron Scattering. ACS Applied Materials & Interfaces, 2017, 9, 8704-8713.	8.0	7
63	Self-Assembly: Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970028.	11.2	2
64	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	21.0	2
65	Biomimetic Templating: Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating (Adv. Funct. Mater. 25/2019). Advanced Functional Materials, 2019, 29, 1970169.	14.9	1
66	Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses. , 2019, , 387-412.		1
67	Microporous Membranes for Ultrafast and Energy-Efficient Removal of Antibiotics Through Polyphenol-Mediated Nanointerfaces. SSRN Electronic Journal, 0, , .	0.4	0