
Holger Babinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6055356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Investigation of Normal Shock Wave-Vortex Interactions. , 2022, , .		0
2	Lift Control on Pitching Wings Experiencing Gusts. , 2022, , .		0
3	The Influence of Surface Geometry on the Fan-Plane Boundary-Layer in Transonic Intakes at High-Incidence. , 2022, , .		4
4	Corner effects on the unsteady behaviour of compression corner shock wave/boundary layer interactions. , 2022, , .		4
5	The Influence of Conical Shocks on Compression Corner Shock Wave/Boundary Layer Interactions. , 2022, , .		1
6	Effect of Winglet Serration Geometry on the Wingtip Vortex. , 2022, , .		1
7	Mitigation of Airfoil Gust Loads Through Pitch. AIAA Journal, 2022, 60, 5273-5285.	2.6	6
8	A study of the time-resolved structure of the vortices shed into the wake of an isolated F1 car wheel. Experiments in Fluids, 2022, 63, .	2.4	3
9	Nozzle Geometry-Induced Vortices in Supersonic Wind Tunnels. AIAA Journal, 2021, 59, 1087-1098.	2.6	7
10	Unsteady Vorticity Force Decompostion - Evaluating Gust Distortion. , 2021, , .		3
11	Unsteady Modelling of Pitching Wings for Gust Mitigation. , 2021, , .		4
12	Experimental Validation of the Quadratic Constitutive Relation in Supersonic Streamwise Corner Flows. , 2021, , .		2
13	Noncirculatory Force on a Finite Thickness Body Encountering a Gust. AIAA Journal, 2021, 59, 719-730.	2.6	11
14	Boundary layer vortex sheet evolution around an accelerating and rotating cylinder. Journal of Fluid Mechanics, 2021, 915, .	3.4	10
15	Lessons Learned from a Model Validation Study in High-speed Aerodynamics. , 2021, , .		Ο
16	Corner effects for compression corner shock wave/boundary layer interactions in rectangular channels. , 2021, , .		4
17	Analysis and extension of the quadratic constitutive relation for RANS methods. Aeronautical Journal, 2021, 125, 1746-1767.	1.6	1
18	WP-5 External Flows—Wing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 347-512	0.3	0

#	Article	IF	CITATIONS
19	WP-1 Reference Cases of Laminar and Turbulent Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 25-127.	0.3	1
20	WP-2 Basic Investigation of Transition Effect. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 129-225.	0.3	2
21	Wing-Gust Interactions: The Effect of Transverse Velocity Profile. , 2020, , .		6
22	Non-Circulatory Force on a Finite Thickness Body Encountering a Gust. , 2020, , .		2
23	Unsteady Vorticity Shedding from a Circular Cylinder: Surging, Spinning and Gust Encounters. , 2020, ,		3
24	Negating Gust Effects by Actively Pitching a Wing. , 2020, , .		10
25	The Effect of the Corner Boundary Layer on Shock-induced Separation in a Rectangular Channel. , 2020, , .		0
26	Effect of Transverse Gust Velocity Profiles. AIAA Journal, 2020, 58, 5123-5133.	2.6	26
27	On How the Generation of Lift Can Be Explained in a Closed Form Based on the Fundamental Conservation Equations. , 2020, , .		0
28	Effect of Reynolds number on a normal shock wave-transitional boundary-layer interaction over a curved surface. Experiments in Fluids, 2019, 60, 1.	2.4	5
29	Boundary-Layer Development Downstream of Normal Shock in Transonic Intakes at Incidence. AIAA Journal, 2019, 57, 5241-5251.	2.6	9
30	Nozzle Geometry Effects on Corner Boundary Layers in Supersonic Wind Tunnels. AIAA Journal, 2019, 57, 3620-3623.	2.6	10
31	The Influence of Nozzle Geometry on Corner Flows in Supersonic Wind Tunnels. , 2019, , .		1
32	Quantification of added-mass effects using particle image velocimetry data for a translating and rotating flat plate. Journal of Fluid Mechanics, 2019, 870, 492-518.	3.4	40
33	Normal-Shock/Boundary-Layer Interactions in Transonic Intakes at High Incidence. AIAA Journal, 2019, 57, 2867-2880.	2.6	8
34	An Investigation into Gust Shear Layer Vorticity and the Added Mass Force for a Transverse Wing-Gust Encounter. , 2019, , .		6
35	Effect of Lip Shape on Shock Wave-Boundary Layer Interactions in Transonic Intakes at Incidence. , 2019, , .		2

Flow Characterisation for a Validation Study in High-speed Aerodynamics. , 2019, , .

3

#	Article	IF	CITATIONS
37	The impact of roughness size on the shock-wave boundary-layer interaction on aero-engine intakes at incidence , 2019, , .		0
38	Corner effects for oblique shockÂwave/turbulent boundary layer interactions in rectangularÂchannels. Journal of Fluid Mechanics, 2019, 862, 1060-1083.	3.4	35
39	Linking the Unsteady Force Generation to Vorticity for a Translating and Rotating Cylinder. , 2019, , .		8
40	Vortex Generators for Corner Separation Caused by Shock-Wave/Boundary-Layer Interactions. Journal of Aircraft, 2019, 56, 239-249.	2.4	9
41	Influence of Boundary-Layer State on Development Downstream of Normal Shock Interactions. AIAA Journal, 2018, 56, 2298-2307.	2.6	5
42	An Experimental Study of Corner Flow Control Applied to an Oblique Shock-Wave/Boundary-Layer Interaction. , 2018, , .		4
43	Effect of Vortex Generators on Corner Flow Separation Caused by Shock Wave-Boundary-Layer Interaction. , 2018, , .		0
44	Normal Shock Wave-Turbulent Boundary Layer Interactions in Transonic Intakes at Incidence. , 2018, , .		3
45	The Impact of Surface Roughness Geometry on Aero-Engine Intakes at Incidence. , 2018, , .		0
46	Response of a Flat Plate Wing to a Transverse Gust at Low Reynolds Numbers. , 2018, , .		8
47	Force Production Mechanisms for a Flat Plate Wing at Low Reynolds Numbers. , 2018, , .		3
48	On the development and early observations from a towing tank-based transverse wing–gust encounter test rig. Experiments in Fluids, 2018, 59, 1.	2.4	50
49	Detecting vortices within unsteady flows when using single-shot PIV. Experiments in Fluids, 2018, 59, 1.	2.4	7
50	Experiments to investigate lift production mechanisms on pitching flat plates. Experiments in Fluids, 2017, 58, 1.	2.4	32
51	Low Reynolds Number Surge Response of a Flat Plate Wing at 90 Degrees Incidence. , 2017, , .		8
52	Onset of unsteadiness in aero-engine intakes at incidence. , 2017, , .		1
53	On the Effect of Test Section Aspect Ratio for Shock Wave - Boundary Layer Interactions. , 2017, , .		2
54	Corner Effects in Oblique Shock Wave/ Boundary Layer Interactions in Rectangular Channels. , 2017, , .		5

Corner Effects in Oblique Shock Wave/ Boundary Layer Interactions in Rectangular Channels. , 2017, , . 54

#	Article	IF	CITATIONS
55	An impulse-based approach to estimating forces in unsteady flow. Journal of Fluid Mechanics, 2017, 815, 60-76.	3.4	40
56	Experiments and Computations on the Lift of Accelerating Flat Plates at Incidence. AIAA Journal, 2017, 55, 3255-3265.	2.6	12
57	A Method for Truck Underbody Aerodynamic Investigation. SAE International Journal of Commercial Vehicles, 2016, 9, 429-437.	0.4	5
58	An Experimental Study on Truck Side-Skirt Flow. SAE International Journal of Passenger Cars - Mechanical Systems, 2016, 9, 625-637.	0.4	3
59	Influence of near-leading edge curvature on the performance of aero-engine intake lips at high-incidence. , 2016, , .		7
60	Vortical Structures on Three-Dimensional Shock Control Bumps. AIAA Journal, 2016, 54, 2338-2350.	2.6	30
61	Correct explanation for lift takes off. Physics Education, 2016, 51, 030108.	0.5	2
62	Low Order Modelling of Lift Forces for Unsteady Pitching and Surging Wings. , 2016, , .		26
63	Low Reynolds Number Acceleration of Flat Plate Wings at High Incidence (Invited). , 2016, , .		13
64	Parametric Variations in Aspect Ratio, Leading Edge and Planform Shapes for the Rectilinear Pitch Cases of AVT-202 (Invited). , 2016, , .		8
65	Influence of transition on the flow downstream of normal shock waveboundary layer interactions. , 2016, , .		9
66	Simulations of Incident Shock Boundary Layer Interactions. , 2016, , .		5
67	Unsteady Flat Plates: a Cursory Review (Invited - AVT202 special session). , 2016, , .		4
68	Transitional Shock-Wave/Boundary-Layer Interactions in Intakes at Incidence. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2016, , 323-333.	0.3	1
69	Transition location effects on normal shock waveboundary layer interactions. , 2015, , .		9
70	On the calculation of boundary-layer parameters from discrete data. Experiments in Fluids, 2015, 56, 1.	2.4	34
71	A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves, 2015, 25, 473-494.	1.9	70
72	Shock Wave-Boundary-Layer Interactions in Subsonic Intakes at High Incidence. , 2015, , .		11

Shock Wave-Boundary-Layer Interactions in Subsonic Intakes at High Incidence. , 2015, , . 72

Holger Babinsky

#	Article	IF	CITATIONS
73	Experimental and Computational Investigations of a Normal-Hole-Bled Supersonic Boundary Layer. AIAA Journal, 2015, 53, 3726-3736.	2.6	13
74	Low Reynolds Number Experimental Studies on Flat Plates. , 2014, , .		6
75	Comparison of Experimental and Computational Flow Structure Investigations of a Normal-Hole Bled Supersonic Boundary Layer. , 2014, , .		3
76	Bleed and Vortex Generator Effectiveness for Separation Prevention in a Transonic Diffuser. , 2014, , .		1
77	An experimental investigation into noise radiation from thin rectangular jets. , 2014, , .		2
78	The Effect of Wind Tunnel Size and Shock Strength on Incident Shock Boundary Layer Interaction Experiments. , 2014, , .		8
79	Joint Experimental and Numerical Approach to Three-Dimensional Shock Control Bump Research. AIAA Journal, 2014, 52, 436-446.	2.6	32
80	Impulsively Started Flat Plate Circulation. AIAA Journal, 2014, 52, 1800-1802.	2.6	12
81	Three-dimensional shock control bumps: effects of geometry. , 2014, , .		10
82	An investigation of interactions between normal shocks and transitional boundary layers. , 2014, , .		10
83	Canonical Normal Shock Wave/Boundary-Layer Interaction Flows Relevant to External Compression Inlets. AIAA Journal, 2013, 51, 2208-2217.	2.6	9
84	Lift and the leading-edge vortex. Journal of Fluid Mechanics, 2013, 720, 280-313.	3.4	189
85	Shock Wave/Boundary-Layer Interaction Control Using a Combination of Vortex Generators and Bleed. AIAA Journal, 2013, 51, 1221-1233.	2.6	71
86	Aerodynamic Modeling of Swept-Bladed Vertical Axis Wind Turbines. Journal of Propulsion and Power, 2013, 29, 227-237.	2.2	3
87	Flow physics of a normal-hole bled supersonic turbulent boundary layer. , 2013, , .		6
88	Experimental Studies of an Accelerating, Pitching, Flat-Plate at Low Reynolds Number. , 2013, , .		10
89	The Effects of Various Vortex Generator Configurations on a Normal Shock Wave / Boundary Layer Interaction. , 2013, , .		13
90	Vortical structures on three-dimensional shock control bumps. , 2013, , .		30

Vortical structures on three-dimensional shock control bumps. , 2013, , . 90

#	Article	IF	CITATIONS
91	Corner effects in reflecting oblique shock-wave/boundary-layer interactions. , 2013, , .		29
92	The Effect of Tunnel Size on Incident Shock Boundary Layer Interaction Experiments. , 2013, , .		10
93	A Canonical Normal SBLI Flow Relevant to External Compression Inlets. , 2013, , .		1
94	Numerical and Experimental Examination of Shock Control Bump Flow Physics. , 2013, , 333-349.		5
95	Control of a Shock-Wave/Boundary-Layer Interaction and Subsequent Subsonic Diffuser Using a Combination of Vortex Generators and Bleed. , 2012, , .		7
96	Comparison of Bleed and Micro-Vortex Generator Effects on Supersonic Boundary-Layers. , 2012, , .		6
97	Flexible Leading Edge Flap on an Impulsively Started Flat Plate at Low Reynolds Number. , 2012, , .		2
98	Vortex Generators for a Normal Shock/Boundary Layer Interaction with a Downstream Diffuser. Journal of Propulsion and Power, 2012, 28, 71-82.	2.2	45
99	Experimental Study into the Flow Physics of Three-Dimensional Shock Control Bumps. Journal of Aircraft, 2012, 49, 1222-1233.	2.4	29
100	Comparison of Micro-Vortex Generators in Supersonic Flows. , 2012, , .		15
101	Shock Control Bump Robustness Enhancement. , 2012, , .		9
102	Normal Shock Interactions in Rectangular Channels. , 2012, , .		1
103	An experimental investigation of three-dimensional shock control bumps applied to transonic airfoils. , 2012, , .		7
104	Lift and the Leading Edge Vortex. , 2012, , .		5
105	Can Fundamental Shock-Wave/Boundary-Layer Interaction Research be Relevant to Inlet Aerodynamics?. , 2012, , .		4
106	Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels. Journal of Fluid Mechanics, 2012, 707, 287-306.	3.4	90
107	Assessment of Computational Fluid Dynamics and Experimental Data for Shock Boundary-Layer Interactions. AIAA Journal, 2012, 50, 891-903.	2.6	61
108	Leading Edge Vortex Development on a Waving Wing at Reynolds Numbers Between 10,000 and 60,000. ,		5

2011, , .

 Low Reynolds Number Experiments on an Impulsively Started Flat Plate at High In An Experimental Investigation of Corner Bleed Applied to a Normal Shock-Wave/Interaction and Diffuser., 2011, . 			2
	Boundary-Layer		
			4
111 Characterization of Micro-Vortex Generators in Supersonic Flows. , 2011, , .			18
112 An experimental study into the flow physics of three-dimensional shock control b	oumps. , 2011, , .		4
Experimental Investigation of the Flow Structure for Shock Wave/Boundary Laye Intersecting Normal and Spanwise Plane. , 2011, , .	r Interactions at an		1
114 Corner effect and separation in transonic channel flows. Journal of Fluid Mechani 247-262.	cs, 2011, 679, 3	.4	105
115 Transonic Shock Wave???Boundary-Layer Interactions. , 2011, , 87-136.			12
Reynolds number effects on leading edge vortex development on a waving wing. 2011, 51, 197-210.	Experiments in Fluids, 2	.4	64
Normal shock boundary layer control with various vortex generator geometries. Fluids, 2011, 49, 233-246.	Computers and 2	.5	86
118 Obtaining absolute acoustic spectra in an aerodynamic wind tunnel. Journal of So 2011, 330, 2249-2264.	ound and Vibration, 3	.9	6
119 Corner Effect and Asymmetry in Transonic Channel Flows. AIAA Journal, 2011, 49	, 2382-2392. 2	.6	32
120 Three-Dimensional Effects on Sliding and Waving Wings. Journal of Aircraft, 201	1, 48, 633-644. 2	.4	36
Microvortex Generators Applied to a Flowfield Containing a Normal Shock Wave Journal, 2011, 49, 1046-1056.	and Diffuser. AIAA 2	.6	43
Experimental and Numerical Study of Oscillating Transonic Shock Waves in Duct 49, 1710-1720.	s. AIAA Journal, 2011, 2	.6	21
An experimental study of transonic shock/boundary layer interactions subject to pressure perturbations. Aerospace Science and Technology, 2010, 14, 134-142.	downstream 4	.8	26
Unsteady Lift Generation on Rotating Wings at Low Reynolds Numbers. Journal of 1013-1021.	of Aircraft, 2010, 47, 2	.4	77
125 Normal Shock Boundary Layer Interaction Control Using Micro-Vortex Generator	s. , 2010, , .		10

126 VGs for a Normal SBLI with a Downstream Diffuser. , 2010, , .

#	Article	IF	CITATIONS
127	Assessment of CFD Models for Shock Boundary Layer Interaction. , 2010, , .		14
128	Three-Dimensional Effects on a Waving Wing. , 2010, , .		5
129	Micro-Vortex Generators Applied to a Flow-Field Containing a Normal Shock-Wave and Diffuser. , 2010, , .		1
130	Experimental investigation into Parameters Governing Corner Interactions for Transonic Shock-Wave/Boundary-Layer Interactions. , 2010, , .		18
131	An Experimental and Numerical Study of an Oscillating Transonic Shock Wave in a Duct. , 2010, , .		4
132	Boundary-Layer Suction System Design for Application to a Laminar Flying Wing Aircraft. , 2010, , .		2
133	WP-4 RANS/URANS Simulations (Charles Hirsch). Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 327-338.	0.3	0
134	Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA Journal, 2009, 47, 668-675.	2.6	274
135	Impulsively Started Flat Plate Flow. Journal of Aircraft, 2009, 46, 2186-2189.	2.4	26
136	Convergence Failure and Stall Hysteresis in Actuator-Disk Momentum Models Applied to Vertical Axis Wind Turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 2009, 131, .	1.8	11
137	Behaviour of unsteady transonic shock/boundary layer interactions with three-dimensional effects. , 2009, , .		5
138	A Representative Flowfield of External Compression Inlets and Diffusers. , 2009, , .		8
139	Vortex Detection Methods for Use with PIV and CFD Data. , 2009, , .		19
140	Aerodynamic Modeling of Swept Bladed Vertical Axis Wind Turbines. , 2009, , .		2
141	Conceptual Design for a Laminar Flying Wing Aircraft. , 2009, , .		6
142	SBLI control for wings and inlets. , 2009, , 51-58.		1
143	SBLI control for wings and inlets. Shock Waves, 2008, 18, 89-96.	1.9	89
144	A combined experimental and numerical study of flow structures over three-dimensional shock control bumps. Aerospace Science and Technology, 2008, 12, 436-447.	4.8	56

#	Article	IF	CITATIONS
145	Shock / Boundary-Layer Interaction Control Using Three-Dimensional Bumps in Supersonic Engine Inlets. , 2008, , .		12
146	Unsteady Normal Shock Wave Boundary Layer Interactions with Control. , 2008, , .		2
147	Shock-Wave/Boundary-Layer Interaction Control Using Three-Dimensional Bumps for Transonic Wings. AIAA Journal, 2008, 46, 1442-1452.	2.6	109
148	Low Reynolds Number Aerodynamics of Leading-Edge Flaps. Journal of Aircraft, 2008, 45, 342-345.	2.4	31
149	Unsteady shock wave dynamics. Journal of Fluid Mechanics, 2008, 603, 463-473.	3.4	99
150	Effect of Microvortex Generators On Seperated Normal Shock/ Boundary Layer Interactions. Journal of Aircraft, 2007, 44, 170-174.	2.4	119
151	Optimizing the Energy Output of Vertical Axis Wind Turbines for Fluctuating Wind Conditions. , 2007, , .		12
152	Landing Gear for a Silent Aircraft. , 2007, , .		20
153	Shock / Boundary-Layer Interaction Control Using Three-Dimensional Bumps for Transonic Wings. , 2007, , .		7
154	Micro-Vortex Generator Flow Control for Supersonic Engine Inlets. , 2007, , .		38
155	Three-Dimensional SBLI Control for Transonic Wings. , 2006, , .		2
156	Experimental Investigation of 3D Shock / Boundary Layer Interaction Control in Transonic Flows. , 2006, , .		7
157	Wind-Tunnel Setup for Investigations of Normal Shock Wave/Boundary Layer Interaction Control. AIAA Journal, 2006, 44, 2803-2805.	2.6	52
158	Evaluation of wave drag reduction by flow control. Aerospace Science and Technology, 2006, 10, 1-8.	4.8	26
159	Separated Shock-Boundary-Layer Interaction Control Using Streamwise Slots. Journal of Aircraft, 2005, 42, 166-171.	2.4	43
160	Evaluation of Wave Drag Reduction by Flow Control. , 2005, , .		2
161	Improved Boundary Layer Quantities in the Shock Wave Boundary Layer Interaction Region on Bumps. , 2005, , .		6
162	Shock Wave/ Boundary-Layer Interaction Control Using Streamwise Slots in Transonic Flows. Journal of Aircraft, 2004, 41, 540-546.	2.4	41

#	Article	IF	CITATIONS
163	Vortex Generators near Shock/ Boundary Layer Interactions. , 2004, , .		28
164	Improving the Lag Entrainment Method in the Case of Transonic Shock Wave/Boundary Layer Interaction. , 2004, , .		0
165	How do wings work?. Physics Education, 2003, 38, 497-503.	0.5	72
166	Unsteady Shock Behaviour on a NACA0012 Aerofoil. , 2003, , .		4
167	Computational Investigation of Groove Controlled Shock Wave / Boundary Layer Interaction. , 2003, , .		10
168	Shock / Boundary Layer Interaction Control Using 3D Devices. , 2003, , .		32
169	Experimental Investigation of Turbulence in Transonic Shock / Boundary Layer Interactions over Bumps. , 2003, , .		3
170	Experimental Investigation of Transonic Aerofoil Shock/ Boundary Layer Interaction Control Using Streamwise Slots. Fluid Mechanics and Its Applications, 2003, , 285-290.	0.2	5
171	Viscous Compressible Flow Through a Hole in a Plate, Including Entry Effects. Journal of Aircraft, 2002, 39, 516-518.	2.4	5
172	Effect of Surface Roughness on Unseparated Shock-Wave/Turbulent Boundary-Layer Interactions. AIAA Journal, 2002, 40, 1567-1573.	2.6	8
173	Control of normal shock wave/turbulent boundary layer interactions using streamwise grooves. , 2002, , .		14
174	Effect of surface roughness on unseparated shock-wave/turbulent boundary-layer interactions. AIAA Journal, 2002, 40, 1567-1573.	2.6	1
175	Control of normal shock wave/turbulent boundary-layer interaction using streamwise slots. , 2001, , .		12
176	Geometries for Five-Hole-Type Probes with Planar Sensor Arrays. AIAA Journal, 2001, 39, 2414-2416.	2.6	1
177	The effect of surface roughness on shock wave/turbulent boundary layer interactions. , 2000, , .		2
178	Viscous Compressible Flow Across a Hole in a Plate. Journal of Aircraft, 2000, 37, 1028-1032.	2.4	10
179	The aerodynamic performance of paragliders. Aeronautical Journal, 1999, 103, 421-428.	1.6	7
180	The influence of entrance geometry of circular reflectors on shock wave focusing. Computers and Fluids, 1998, 27, 611-618.	2.5	10

#	Article	IF	CITATIONS
181	Prediction of Shock Angles Caused by Sharp Delta Wings with Attack Angle. AIAA Journal, 1998, 36, 1327-1328.	2.6	1
182	Large-Scale Roughness Influence on Turbulent Hypersonic Boundary Layers Approaching Compression Corners. Journal of Spacecraft and Rockets, 1997, 34, 70-75.	1.9	9
183	Transient shock wave flows in tubes with a sudden change in cross section. Shock Waves, 1997, 7, 151-162.	1.9	44
184	Numerical study on transient shock wave flows in a tube with a sudden change in its cross section. , 1996, , .		1
185	CFD validation strategies for compressible flow using interferometry. , 1996, , .		2
186	Automatic liquid crystal thermography for transient heat transfer measurements in hypersonic flow. Experiments in Fluids, 1996, 21, 227-236.	2.4	35
187	<title>Animated visualization of shock-wave flow fields for dynamic comparison between experiment and computational prediction</title> . , 1995, , .		2
188	Shock-Wave Unsteadiness in Turbulent Shock Boundary-Layer Interactions. , 0, , 373-394.		3
189	Analytical Treatment of Shock Wave???Boundary-Layer Interactions. , 0, , 395-458.		1
190	An Experimental Study of the Impact of Underbody Roughness on the Instantaneous Wake Flow Topology behind a Truck Geometry. , 0, , .		0
191	Investigation of Passive Porosity as a Means for Bluff-Body Drag Reduction. SAE International Journal of Commercial Vehicles, 0, 11, 65-73.	0.4	3
192	The Effect of Cross-Flow Vortex Trap Devices on the Aerodynamic Drag of Road Haulage Vehicles. , 0, , .		0
193	"Added-Mass―Vortex-Sheet Development in an Accelerating Incident Flow. AIAA Journal, 0, , 1-5.	2.6	1