
Xinying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6055239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. Science of the Total Environment, 2022, 808, 152141.	8.0	8

2 Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum) Tj ETQq0 0 0 grgBT /Overlock 10 T

3	A novel lignin hydrogel supported nZVI for efficient removal of Cr(VI). Chemosphere, 2022, 301, 134781.	8.2	24
4	Efficient degradation of Congo red and phenol by a new photocatalyst Ag/AgBr-Al-attapulgite composite under visible light irradiation. Environmental Science and Pollution Research, 2021, 28, 33320-33330.	5.3	2
5	Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere, 2021, 273, 129666.	8.2	53
6	Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L. Ecotoxicology and Environmental Safety, 2021, 219, 112332.	6.0	27
7	A novel green substrate made by sludge digestate and its biochar: Plant growth and greenhouse emission. Science of the Total Environment, 2021, 797, 149194.	8.0	7
8	Study on removal of pyrene by Agropyron cristatum L. in pyrene–Ni co-contaminated soil. International Journal of Phytoremediation, 2020, 22, 313-321.	3.1	4
9	Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere, 2020, 241, 125027.	8.2	33
10	Cd uptake by Phytolacca americana L. promoted by cornstalk biochar amendments in Cd-contaminated soil. International Journal of Phytoremediation, 2020, 22, 251-258.	3.1	9
11	Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions. Journal of Cleaner Production, 2020, 275, 123787.	9.3	31
12	Effect of cornstalk biochar on phytoremediation of Cd-contaminated soil by Beta vulgaris var. cicla L. Ecotoxicology and Environmental Safety, 2020, 205, 111144.	6.0	39
13	Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). Environmental Science and Pollution Research, 2020, 27, 41639-41646.	5.3	8
14	Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. Chemosphere, 2020, 252, 126471.	8.2	54
15	Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L Chemosphere, 2019, 237, 124502.	8.2	20
16	Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Scirpus triqueter in co-contaminated soils. International Journal of Phytoremediation, 2019, 21, 1190-1196.	3.1	1
16 17	Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Scirpus triqueter in co-contaminated soils. International Journal of	3.1 6.0	1 8

#	Article	IF	CITATIONS
19	Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere, 2019, 222, 831-838.	8.2	73
20	Superhydrophobic nylon cloth coated with modified silica used for oil–water separation. Environmental Progress and Sustainable Energy, 2019, 38, e13051.	2.3	4
21	Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environmental Technology (United Kingdom), 2019, 40, 2345-2353.	2.2	43
22	Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter. Ecotoxicology and Environmental Safety, 2018, 154, 69-74.	6.0	14
23	Fabrication of Superhydrophobic Kapok Fiber Using CeO ₂ and Octadecyltrimethoxysilane. Environmental Engineering Science, 2018, 35, 696-702.	1.6	11
24	Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology, 2018, 264, 190-197.	9.6	67
25	A durable and high-flux composite coating nylon membrane for oil-water separation. Journal of Cleaner Production, 2018, 193, 702-708.	9.3	38
26	Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils. International Journal of Phytoremediation, 2018, 20, 1055-1061.	3.1	13
27	Resource recovery of Eichhornia crassipes as oil superabsorbent. Marine Pollution Bulletin, 2017, 118, 267-274.	5.0	15
28	Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. Journal of Environmental Management, 2017, 192, 234-242.	7.8	88
29	Salix integra Combined with Pseudomonas aeruginosa to Restore Diesel Contaminated Soils. Journal of Environmental Engineering, ASCE, 2017, 143, 04017037.	1.4	1
30	Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. Science of the Total Environment, 2017, 599-600, 50-57.	8.0	21
31	Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Journal of Hazardous Materials, 2017, 325, 319-326.	12.4	59
32	Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Chemosphere, 2017, 188, 397-402.	8.2	25
33	The Contribution of Pyrene Degrading Bacteria and Chemical Reagents to Scirpus triqueter Phytoremediation of Pyrene and Ni Co-contaminated Soil. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	9
34	Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application. Environmental Science and Pollution Research, 2017, 24, 19194-19200.	5.3	2
35	Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum. Environmental Science and Pollution Research, 2017, 24, 18946-18952.	5.3	16
36	Kapok fiber as a natural source for fabrication of oil absorbent. Journal of Chemical Technology and Biotechnology, 2017, 92, 1613-1619.	3.2	29

#	Article	IF	CITATIONS
37	Spilledâ€Oil Sorbents Prepared by Recycling of Eutrophicated Aquatic Plants. Chemical Engineering and Technology, 2017, 40, 170-176.	1.5	2
38	Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. International Biodeterioration and Biodegradation, 2016, 111, 78-84.	3.9	77
39	Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. Chemosphere, 2016, 154, 515-520.	8.2	30
40	Cellulose-based aerogel from Eichhornia crassipes as an oil superabsorbent. RSC Advances, 2016, 6, 98563-98570.	3.6	21
41	Combined remediation of pyrene-contaminated soil with a coupled system of persulfate oxidation and phytoremediation with ryegrass. Environmental Science and Pollution Research, 2016, 23, 20672-20679.	5.3	9
42	Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environmental Science and Pollution Research, 2016, 23, 5705-5711.	5.3	28
43	Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application. Journal of Soils and Sediments, 2016, 16, 2090-2096.	3.0	14
44	Rhizosphere Phytoremediation with Cyperus rotundus for Diesel-Contaminated Wetlands. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
45	Effect of rhizodeposition on alterations of soil structure and microbial community in pyrene–lead co-contaminated soils. Environmental Earth Sciences, 2016, 75, 1.	2.7	5
46	Effects of key components of S. triqueter root exudates on fractions and bioavailability of pyrene–lead co-contaminated soils. International Journal of Environmental Science and Technology, 2016, 13, 887-896.	3.5	11
47	Magnetic pomelo peel as a new absorption material for oil-polluted water. Desalination and Water Treatment, 2016, 57, 12536-12545.	1.0	21
48	Preparation and characterization of polypropylene fiber-grafted polybutylmethacrylate as oil sorbent. Desalination and Water Treatment, 2016, 57, 18560-18571.	1.0	15
49	Influences of Hydrosoluble and Lipophilic Rhizodeposits on Pyrene Sorption in Soil. Clean - Soil, Air, Water, 2015, 43, 1401-1408.	1.1	3
50	Stainless steel mesh coated with silica for oil–water separation. European Polymer Journal, 2015, 73, 374-379.	5.4	29
51	Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. Journal of Chemical Technology and Biotechnology, 2015, 90, 2106-2112.	3.2	54
52	Oilâ€absorbent polyurethane sponge coated with <scp>KH</scp> â€570â€modified graphene. Journal of Applied Polymer Science, 2015, 132, .	2.6	30
53	Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohydrate Polymers, 2015, 132, 245-251.	10.2	75
54	Solubilization Effect of Surfactants on Morphological Transformation of Cadmium and Pyrene in Co-Contaminated Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	9

#	Article	IF	CITATIONS
55	Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. Journal of Polymer Research, 2015, 22, 1.	2.4	15
56	Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environmental Science and Pollution Research, 2015, 22, 17780-17788.	5.3	22
5 7	Potential of <i>Sagittaria trifolia</i> for Phytoremediation of Diesel. International Journal of Phytoremediation, 2015, 17, 1220-1226.	3.1	6
58	Sorption of oil from simulated seawater by fatty acid-modified pomelo peel. Desalination and Water Treatment, 2015, 56, 939-946.	1.0	10
59	Preparation of Poly(ethylene terephthalate)-graft-polystyrene Copolymer. Asian Journal of Chemistry, 2014, 26, 5899-5902.	0.3	Ο
60	Diesel degradation potential of endophytic bacteria isolated fromÂScirpus triqueter. International Biodeterioration and Biodegradation, 2014, 87, 99-105.	3.9	42
61	Effect of palmitic acid on remediation of Scripus triqueter and enzymes activities of the rhizosphere soil in the simulated diesel-spiked wetland. International Biodeterioration and Biodegradation, 2014, 94, 109-114.	3.9	5
62	Rhizosphere effect of <i>Scirpus triqueter</i> on soil microbial structure during phytoremediation of diesel-contaminated wetland. Environmental Technology (United Kingdom), 2014, 35, 514-520.	2.2	20
63	Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environmental Science and Pollution Research, 2014, 21, 8198-8205.	5.3	35
64	Response characteristics of seed germination and seedling growth of Acorus tatarinowii under diesel stress. Plant and Soil, 2013, 368, 355-363.	3.7	23
65	The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene. Journal of Hazardous Materials, 2013, 260, 1001-1007.	12.4	13
66	Degradation of diesel pollutants in Huangpu-Yangtze River estuary wetland using plant-microbe systems. International Biodeterioration and Biodegradation, 2013, 76, 71-75.	3.9	39
67	A composite inhibitor used in oilfield: MA-AMPS and imidazoline. Journal of Petroleum Science and Engineering, 2013, 102, 41-46.	4.2	37
68	Effect of Scripus triqueter of its rhizosphere and root exudates on microbial community structure of simulated diesel-spiked wetland. International Biodeterioration and Biodegradation, 2013, 82, 110-116.	3.9	17
69	Alkyl Polyglucoside (APG) Amendment for Improving the Phytoremediation of Pb-PAH Contaminated Soil by the AquaticPlantScirpus triqueter. Soil and Sediment Contamination, 2013, 22, 1013-1027.	1.9	15
70	Response Characteristics ofScirpus Triqueterand Its Rhizosphere to Pyrene Contaminated Soils at Different Growth Stages. International Journal of Phytoremediation, 2012, 14, 691-702.	3.1	19
71	Soil microbial community response to pyrene at the presence of Scirpus triqueter. European Journal of Soil Biology, 2012, 50, 44-50.	3.2	22
72	Short-term effects of diesel fuel on rhizosphere microbial community structure of native plants in Yangtze estuarine wetland. Environmental Science and Pollution Research, 2012, 19, 2179-2185.	5.3	24

#	Article	IF	CITATIONS
73	Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms. Ecotoxicology and Environmental Safety, 2011, 74, 1967-1972.	6.0	55
74	Growth Response and Phytoremediation Ability of Reed for Diesel Contaminant. Procedia Environmental Sciences, 2011, 8, 68-74.	1.4	23
75	Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. Journal of Hazardous Materials, 2011, 193, 45-51.	12.4	61
76	PVA-SiO2-coated stainless steel mesh with superhydrophilic-underwater superoleophobic for efficient oil-water separation. , 0, 126, 157-163.		5