Jose I Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6054862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a novel family of FKBP12 "reshapers―and their use as calcium modulators in skeletal muscle under nitro-oxidative stress. European Journal of Medicinal Chemistry, 2021, 213, 113160.	5.5	5
2	Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments. Nature, 2020, 583, 48-54.	27.8	23
3	A phosphine-stabilized silylene rhodium complex. Dalton Transactions, 2019, 48, 17179-17183.	3.3	7
4	Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 2019, 89, 613-622.	10.7	31
5	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	3.3	12
6	1,3-Dioxa-[3,3]-sigmatropic Oxo-Rearrangement of Substituted Allylic Carbamates: Scope and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 14861-14881.	3.2	10
7	Alkaloids Reactivity: DFT Analysis of Selective Demethylation Reactions. Journal of Organic Chemistry, 2018, 83, 15101-15109.	3.2	2
8	Linear and Cyclic Depsipeptidomimetics with Î²â€Łactam Cores: A Class of New α _v β ₃ Integrin Receptor Inhibitors. ChemBioChem, 2017, 18, 654-665.	2.6	3
9	Catalysis of a 1,3-dipolar reaction by distorted DNA incorporating a heterobimetallic platinum(<scp>ii</scp>) and copper(<scp>ii</scp>) complex. Chemical Science, 2017, 8, 7038-7046.	7.4	6
10	Covalent immobilisation of magnetic nanoparticles on surfaces via strain-promoted azide–alkyne click chemistry. New Journal of Chemistry, 2017, 41, 10835-10840.	2.8	13
11	Site-Selective N-Dealkylation of 1,2,3-Triazolium Salts: A Metal-Free Route to 1,5-Substituted 1,2,3-Triazoles and Related Bistriazoles. Organic Letters, 2016, 18, 2511-2514.	4.6	19
12	The underlying mechanisms for self-healing of poly(disulfide)s. Physical Chemistry Chemical Physics, 2016, 18, 27577-27583.	2.8	144
13	Cationic 1,2,3-Triazolium Alkynes: Components To Enhance 1,4-Regioselective Azide–Alkyne Cycloaddition Reactions. Organic Letters, 2016, 18, 788-791.	4.6	9
14	Cyclopropanation reactions catalysed by dendrimers possessing one metalloporphyrin active site at the core: linear and sigmoidal kinetic behaviour for different dendrimer generations. Tetrahedron, 2016, 72, 1120-1131.	1.9	14
15	Understanding of nanogels swelling behavior through a deep insight into their morphology. Journal of Polymer Science Part A, 2015, 53, 2017-2025.	2.3	22
16	Zwitterionic Ring-Opening Copolymerization of Tetrahydrofuran and Glycidyl Phenyl Ether with B(C ₆ F ₅) ₃ . Macromolecules, 2015, 48, 1664-1672.	4.8	29
17	Remote Substituent Effects on the Stereoselectivity and Organocatalytic Activity of Densely Substituted Unnatural Proline Esters in Aldol Reactions. European Journal of Organic Chemistry, 2015, 2015, 2503-2516.	2.4	23
18	Zwitterionic polymerization of glycidyl monomers to cyclic polyethers with B(C ₆ F ₅) ₃ . Polymer Chemistry, 2014, 5, 6905-6908.	3.9	49

Jose I Miranda

#	Article	IF	CITATIONS
19	Sustainable polymer latexes based on linoleic acid for coatings applications. Progress in Organic Coatings, 2014, 77, 1709-1714.	3.9	31
20	Chirality-Driven Folding of Short β-Lactam Pseudopeptides. Journal of Organic Chemistry, 2013, 78, 224-237.	3.2	9
21	Modulating Lectin Inhibition with <i>N</i> â€Glycosylâ€1,2,3â€triazole Scaffolds. European Journal of Organic Chemistry, 2013, 2013, 2434-2444.	2.4	4
22	Conformation and Chiral Effects in \hat{I} ±, \hat{I} 2, \hat{I} ±-Tripeptides. Journal of Organic Chemistry, 2012, 77, 5907-5913.	3.2	25
23	Introducing Axial Chirality into Mesoionic 4,4′-Bis(1,2,3-triazole) Dicarbenes. Organic Letters, 2012, 14, 1866-1868.	4.6	29
24	Cyclic RGD Î²â€Łactam Peptidomimetics Induce Differential Gene Expression in Human Endothelial Cells. ChemBioChem, 2011, 12, 401-405.	2.6	17
25	â€~Click' Synthesis of Nonsymmetrical 4,4′-Bis(1,2,3-triazolium) Salts. Synthesis, 2011, 2011, 2737-2742.	2.3	15
26	Determination of additives in an electrolytic zinc bath by q1H-NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2010, 398, 1085-1094.	3.7	10
27	Stereomodulating effect of remote groups on the NADH-mimetic reduction of alkyl aroylformates with 1,4-dihydronicotinamide-β-lactam amides. Tetrahedron, 2010, 66, 3187-3194.	1.9	10
28	"Click―Synthesis of Nonsymmetrical Bis(1,2,3-triazoles). Organic Letters, 2010, 12, 1584-1587.	4.6	45
29	Mechanistic Insights on the Magnesium(II) Ion-Activated Reduction of Methyl Benzoylformate with Chelated NADH Peptide β-Lactam Models. Journal of Organic Chemistry, 2009, 74, 6691-6702.	3.2	22
30	Evidences of a hydrolysis process in the synthesis of N-vinylcaprolactam-based microgels. European Polymer Journal, 2008, 44, 4002-4011.	5.4	46
31	"Click―Saccharide/β-Lactam Hybrids for Lectin Inhibition. Organic Letters, 2008, 10, 2227-2230.	4.6	38
32	Reductive Functionalization of Single-Walled Carbon Nanotubes with Lithium Metal Catalyzed by Electron Carrier Additives. Chemistry of Materials, 2008, 20, 4433-4438.	6.7	21
33	Quantitative determination of formic acid in apple juices by 1H NMR spectrometry. Talanta, 2007, 72, 1049-1053.	5.5	47
34	Synthesis of β-Lactam Scaffolds for Ditopic Peptidomimetics. Organic Letters, 2007, 9, 101-104.	4.6	48
35	Functionalization ofN-[(Silyl)methyl]-β-lactam Carbanions with Carbon Electrophiles. Journal of Organic Chemistry, 2006, 71, 6368-6373.	3.2	8
36	A β-lactam route to short peptide segments related to angiotensin-converting enzyme (ACE) inhibitors. Arkivoc, 2005, 2002, 8-16.	0.5	13

Jose I Miranda

#	Article	IF	CITATIONS
37	Evaluation of Chiral Recognition Ability of a Novel Uranyl–Salophen-Based Receptor: An Easy and Rapid Testing Protocol. Chemistry - A European Journal, 2004, 10, 3301-3307.	3.3	23
38	Synthesis of Type II β-Turn Surrogate Dipeptides Based onsyn-α-Amino-α,β-dialkyl-β-lactams. Organic Letters, 2004, 6, 4443-4446.	4.6	26
39	Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Analytica Chimica Acta, 2003, 486, 269-274.	5.4	60
40	Development of a New Family of Conformationally Restricted Peptides as Potent Nucleators of β-Turns. Design, Synthesis, Structure, and Biological Evaluation of a β-Lactam Peptide Analogue of Melanostatin. Journal of the American Chemical Society, 2003, 125, 16243-16260.	13.7	54
41	Quantitative determination of (â^')-epicatechin in cider apple juices by 1H NMR. Talanta, 2003, 61, 139-145.	5.5	45
42	A concise synthesis of α-amino acid N-carboxy anhydrides of (2S,3S)-β-substituted serines. Tetrahedron Letters, 2001, 42, 8955-8957.	1.4	14
43	Practical Synthesis of α-Amino Acid N-Carboxy Anhydrides of Polyhydroxylated α-Amino Acids from β-Lactam Frameworks. Model Studies toward the Synthesis of Directly Linked Peptidyl Nucleoside Antibiotics. Journal of Organic Chemistry, 1998, 63, 5838-5846.	3.2	33
44	New Approach to the Coupling of γ-Amino β-Hydroxy Acids and β,γ-Dihydroxy Acids with α-Amino Acid Esters. Journal of Organic Chemistry, 1996, 61, 9196-9201.	3.2	17
45	Simple access to the nonproteinogenic peptide fragments of lysobactin from azetidin-2-one frameworks. Chemical Communications, 1996, , 161.	4.1	16
46	Diastereoselective [2 + 2] cycloaddition of dichloroketene with α-oxyaldehydes and α-amino aldehydes. Journal of the Chemical Society Chemical Communications, 1995, , 1735-1736.	2.0	16
47	Asymmetric synthesis of α-keto β-lactams via [2+2] cycloaddition reaction: A concise approach to		

47