Geoffrey Attardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605479/publications.pdf

Version: 2024-02-01

66 papers 3,409 citations

30 h-index 55 g-index

76 all docs

76 docs citations

76 times ranked 3466 citing authors

#	Article	IF	CITATIONS
1	Promoting the integrated community case management of pneumonia in children under 5Âyears in Nigeria through the proprietary and patent medicine vendors: a cost-effectiveness analysis. Cost Effectiveness and Resource Allocation, 2021, 19, 12.	0.6	2
2	The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 2021, 19, 41.	1.7	19
3	Frequency of sodium channel genotypes and association with pyrethrum knockdown time in populations of Californian Aedes aegypti. Parasites and Vectors, 2021, 14, 141.	1.0	12
4	Fat and Happy: Profiling Mosquito Fat Body Lipid Storage and Composition Post-blood Meal. Frontiers in Insect Science, 2021, 1, .	0.9	9
5	Evidence of Local Extinction and Reintroduction of Aedes aegypti in Exeter, California. Frontiers in Tropical Diseases, 2021, 2, .	0.5	7
6	Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathogens, 2021, 17, e1009539.	2.1	9
7	Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biology, 2021, 19, 211.	1.7	5
8	Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in Aedes albopictus. Frontiers in Microbiology, 2020, 11, 559035.	1.5	6
9	Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans (Westwood) by Three-Dimensional Analysis. Insects, 2020, 11, 651.	1.0	6
10	Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results and Problems in Cell Differentiation, 2020, 69, 497-536.	0.2	9
11	Impacts of Dietary Nutritional Composition on Larval Development and Adult Body Composition in the Yellow Fever Mosquito (Aedes aegypti). Insects, 2020, 11, 535.	1.0	18
12	Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Scientific Reports, 2020, 10, 19791.	1.6	18
13	Tsetse flies (Glossinidae). , 2020, , .		O
14	Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology, 2019, 20, 187.	3.8	71
15	Putting invertebrate lactation in context. Science, 2019, 363, 593-593.	6.0	6
16	Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiology, 2018, 18, 169.	1.3	9
17	Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male <i>Aedes aegypti</i> Mosquitoes (Diptera: Culicidae) During Transport. Journal of Insect Science, 2018, 18, .	0.6	25
18	A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathogens, 2018, 14, e1006972.	2.1	23

#	Article	IF	Citations
19	Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Neglected Tropical Diseases, 2018, 12, e0006204.	1.3	8
20	Fat Body Organ Culture System in Aedes Aegypti , a Vector of Zika Virus. Journal of Visualized Experiments, 2017, , .	0.2	12
21	Unravelling the relationship between the tsetse fly and its obligate symbiont <i>Wigglesworthia</i> transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170360.	1.2	53
22	Editorial overview: Vectors and medical and veterinary entomology: Becoming vectors or victims, the intriguing interplay between insects and viruses. Current Opinion in Insect Science, 2017, 22, v-vii.	2.2	0
23	Molecular characterization of tsetse's proboscis and its response to Trypanosoma congolense infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006057.	1.3	8
24	The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction. Scientific Reports, 2016, 6, 20334.	1.6	40
25	Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy. Trends in Parasitology, 2016, 32, 739-749.	1.5	95
26	Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nature Communications, 2016, 7, 10165.	5.8	184
27	Obligate symbiont-generated vitamin B6 is critical to maintain proline homeostasis and fecundity in the tsetse fly (Glossina morsitans). , 2016 , , .		0
28	TSS seq based core promoter architecture in blood feeding Tsetse fly (Glossina morsitans morsitans) vector of Trypanosomiasis. BMC Genomics, 2015, 16, 722.	1.2	6
29	Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation. Annual Review of Entomology, 2015, 60, 351-371.	5.7	95
30	A comparative analysis of reproductive biology of insect vectors of human disease. Current Opinion in Insect Science, 2015, 10, 142-148.	2.2	19
31	Amelioration of Reproduction-Associated Oxidative Stress in a Viviparous Insect Is Critical to Prevent Reproductive Senescence. PLoS ONE, 2014, 9, e87554.	1.1	22
32	Vitamin B ₆ Generated by Obligate Symbionts Is Critical for Maintaining Proline Homeostasis and Fecundity in Tsetse Flies. Applied and Environmental Microbiology, 2014, 80, 5844-5853.	1.4	108
33	Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology, 2014, 5, 103.	1.3	136
34	Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success. PLoS Neglected Tropical Diseases, 2014, 8, e2517.	1.3	53
35	The Homeodomain Protein Ladybird Late Regulates Synthesis of Milk Proteins during Pregnancy in the Tsetse Fly (Glossina morsitans). PLoS Neglected Tropical Diseases, 2014, 8, e2645.	1.3	27
36	Human African Trypanosomiasis Research Gets a Boost: Unraveling the Tsetse Genome. PLoS Neglected Tropical Diseases, 2014, 8, e2624.	1.3	9

#	Article	IF	CITATIONS
37	A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients. PLoS Genetics, 2014, 10, e1003874.	1.5	46
38	Trypanosome transmission dynamics in tsetse. Current Opinion in Insect Science, 2014, 3, 43-49.	2.2	27
39	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	6.0	254
40	Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 811-825.	0.7	44
41	Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy. Molecular and Cellular Endocrinology, 2013, 372, 30-41.	1.6	43
42	Mechanisms that contribute to the establishment and persistence of bed bug infestations. Terrestrial Arthropod Reviews, 2013, 6, 227-246.	0.8	3
43	Sphingomyelinase Activity in Mother's Milk Is Essential for Juvenile Development: A Case from Lactating Tsetse Flies1. Biology of Reproduction, 2012, 87, 17, 1-10.	1.2	27
44	Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. Insect Biochemistry and Molecular Biology, 2012, 42, 360-370.	1.2	68
45	Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures. PLoS Neglected Tropical Diseases, 2011, 5, e1190.	1.3	23
46	Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy. Journal of Insect Physiology, 2011, 57, 1553-1561.	0.9	23
47	AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti. Journal of Biological Chemistry, 2011, 286, 10803-10813.	1.6	33
48	Transcriptome analysis of reproductive tissue and intrauterine developmental stages of the tsetse fly (Glossina morsitans morsitans). BMC Genomics, 2010, 11, 160.	1.2	23
49	An insight into the sialome of Glossina morsitans morsitans. BMC Genomics, 2010, 11, 213.	1.2	76
50	Molecular characterization of two novel milk proteins in the tsetse fly (<i>Glossina morsitans) Tj ETQq0 0 0 rgBT</i>	Overlock	10 Tf 50 222
51	Insect-protozoa-bacteria associations: a model system for investigating host-parasite interactions , 2009, , 223-240.		0
52	Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity. Journal of Insect Physiology, 2008, 54, 1236-1242.	0.9	138
53	Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness. Advances in Experimental Medicine and Biology, 2008, 627, 35-48.	0.8	90
54	Infections with Immunogenic Trypanosomes Reduce Tsetse Reproductive Fitness: Potential Impact of Different Parasite Strains on Vector Population Structure. PLoS Neglected Tropical Diseases, 2008, 2, e192.	1.3	43

#	Article	IF	CITATIONS
55	Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetseâ€transmitted trypanosomiasis control. Entomological Research, 2007, 37, 231-237.	0.6	2
56	Molecular aspects of transferrin expression in the tsetse fly (Glossina morsitans morsitans). Journal of Insect Physiology, 2007, 53, 715-723.	0.9	49
57	Molecular characterization of iron binding proteins from Glossina morsitans morsitans (Diptera:) Tj ETQq1 1 0.78	4314 rgBT 1:2	/Qverlock 1
58	Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Molecular Biology, 2006, 15, 411-424.	1.0	58
59	Molecular aspects of viviparous reproductive biology of the tsetse fly (Glossina morsitans) Tj ETQq1 1 0.784314 r 1128-1136.	gBT /Overl 0.9	ock 10 Tf <mark>5</mark> 0 39
60	Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Journal of Experimental Biology, 2006, 209, 3071-3078.	0.8	81
61	GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 11167-11176.	1.6	97
62	Target of Rapamycin-dependent Activation of S6 Kinase Is a Central Step in the Transduction of Nutritional Signals during Egg Development in a Mosquito. Journal of Biological Chemistry, 2005, 280, 20565-20572.	1.6	146
63	Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology, 2005, 35, 661-675.	1.2	271
64	Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10626-10631.	3.3	222
65	RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13374-13379.	3.3	72
66	Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochemistry and Molecular Biology, 2002, 32, 1275-1286.	1.2	199