
Geoffrey Attardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology, 2005, 35, 661-675.	2.7	271
2	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
3	Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10626-10631.	7.1	222
4	Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochemistry and Molecular Biology, 2002, 32, 1275-1286.	2.7	199
5	Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nature Communications, 2016, 7, 10165.	12.8	184
6	Target of Rapamycin-dependent Activation of S6 Kinase Is a Central Step in the Transduction of Nutritional Signals during Egg Development in a Mosquito. Journal of Biological Chemistry, 2005, 280, 20565-20572.	3.4	146
7	Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity. Journal of Insect Physiology, 2008, 54, 1236-1242.	2.0	138
8	Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology, 2014, 5, 103.	2.8	136
9	Vitamin B ₆ Generated by Obligate Symbionts Is Critical for Maintaining Proline Homeostasis and Fecundity in Tsetse Flies. Applied and Environmental Microbiology, 2014, 80, 5844-5853.	3.1	108
10	GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 11167-11176.	3.4	97
11	Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation. Annual Review of Entomology, 2015, 60, 351-371.	11.8	95
12	Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy. Trends in Parasitology, 2016, 32, 739-749.	3.3	95
13	Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness. Advances in Experimental Medicine and Biology, 2008, 627, 35-48.	1.6	90
14	Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Journal of Experimental Biology, 2006, 209, 3071-3078.	1.7	81
15	An insight into the sialome of Glossina morsitans morsitans. BMC Genomics, 2010, 11, 213.	2.8	76
16	RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13374-13379.	7.1	72
17	Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology, 2019, 20, 187.	8.8	71
18	Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. Insect Biochemistry and Molecular Biology, 2012, 42, 360-370.	2.7	68

GEOFFREY ATTARDO

#	Article	IF	CITATIONS
19	Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Molecular Biology, 2006, 15, 411-424.	2.0	58
20	Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success. PLoS Neglected Tropical Diseases, 2014, 8, e2517.	3.0	53
21	Unravelling the relationship between the tsetse fly and its obligate symbiont <i>Wigglesworthia</i> : transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170360.	2.6	53
22	Molecular aspects of transferrin expression in the tsetse fly (Glossina morsitans morsitans). Journal of Insect Physiology, 2007, 53, 715-723.	2.0	49
23	A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients. PLoS Genetics, 2014, 10, e1003874.	3.5	46
24	Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 811-825.	1.5	44
25	Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy. Molecular and Cellular Endocrinology, 2013, 372, 30-41.	3.2	43
26	Infections with Immunogenic Trypanosomes Reduce Tsetse Reproductive Fitness: Potential Impact of Different Parasite Strains on Vector Population Structure. PLoS Neglected Tropical Diseases, 2008, 2, e192.	3.0	43
27	The Spermatophore in Clossina morsitans morsitans: Insights into Male Contributions to Reproduction. Scientific Reports, 2016, 6, 20334.	3.3	40
28	Molecular aspects of viviparous reproductive biology of the tsetse fly (Glossina morsitans) Tj ETQq0 0 0 rgBT /Ove 1128-1136.	erlock 10 T 2.0	f 50 387 Td 39
29	Molecular characterization of iron binding proteins from Glossina morsitans morsitans (Diptera:) Tj ETQq1 1 0.784	4314 rgBT 2.7	Öyerlock 1
30	AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti. Journal of Biological Chemistry, 2011, 286, 10803-10813.	3.4	33
31	Sphingomyelinase Activity in Mother's Milk Is Essential for Juvenile Development: A Case from Lactating Tsetse Flies1. Biology of Reproduction, 2012, 87, 17, 1-10.	2.7	27
32	The Homeodomain Protein Ladybird Late Regulates Synthesis of Milk Proteins during Pregnancy in the Tsetse Fly (Glossina morsitans). PLoS Neglected Tropical Diseases, 2014, 8, e2645.	3.0	27
33	Trypanosome transmission dynamics in tsetse. Current Opinion in Insect Science, 2014, 3, 43-49.	4.4	27
34	Molecular characterization of two novel milk proteins in the tsetse fly (<i>Glossina morsitans) Tj ETQq0 0 0 rgBT /</i>	Overlock	10 Tf 50 142
35	Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male <i>Aedes aegypti</i> Mosquitoes (Diptera: Culicidae) During Transport. Journal of Insect Science, 2018, 18, .	1.5	25

36Transcriptome analysis of reproductive tissue and intrauterine developmental stages of the tsetse fly
(Glossina morsitans morsitans). BMC Genomics, 2010, 11, 160.2.823

GEOFFREY ATTARDO

#	Article	IF	CITATIONS
37	Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures. PLoS Neglected Tropical Diseases, 2011, 5, e1190.	3.0	23
38	Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy. Journal of Insect Physiology, 2011, 57, 1553-1561.	2.0	23
39	A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathogens, 2018, 14, e1006972.	4.7	23
40	Amelioration of Reproduction-Associated Oxidative Stress in a Viviparous Insect Is Critical to Prevent Reproductive Senescence. PLoS ONE, 2014, 9, e87554.	2.5	22
41	A comparative analysis of reproductive biology of insect vectors of human disease. Current Opinion in Insect Science, 2015, 10, 142-148.	4.4	19
42	The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 2021, 19, 41.	3.8	19
43	Impacts of Dietary Nutritional Composition on Larval Development and Adult Body Composition in the Yellow Fever Mosquito (Aedes aegypti). Insects, 2020, 11, 535.	2.2	18
44	Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Scientific Reports, 2020, 10, 19791.	3.3	18
45	Fat Body Organ Culture System in Aedes Aegypti , a Vector of Zika Virus. Journal of Visualized Experiments, 2017, , .	0.3	12
46	Frequency of sodium channel genotypes and association with pyrethrum knockdown time in populations of Californian Aedes aegypti. Parasites and Vectors, 2021, 14, 141.	2.5	12
47	Human African Trypanosomiasis Research Gets a Boost: Unraveling the Tsetse Genome. PLoS Neglected Tropical Diseases, 2014, 8, e2624.	3.0	9
48	Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiology, 2018, 18, 169.	3.3	9
49	Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results and Problems in Cell Differentiation, 2020, 69, 497-536.	0.7	9
50	Fat and Happy: Profiling Mosquito Fat Body Lipid Storage and Composition Post-blood Meal. Frontiers in Insect Science, 2021, 1, .	2.1	9
51	Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathogens, 2021, 17, e1009539.	4.7	9
52	Molecular characterization of tsetse's proboscis and its response to Trypanosoma congolense infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006057.	3.0	8
53	Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Neglected Tropical Diseases, 2018, 12, e0006204.	3.0	8
54	Evidence of Local Extinction and Reintroduction of Aedes aegypti in Exeter, California. Frontiers in Tropical Diseases, 2021, 2, .	1.4	7

4

GEOFFREY ATTARDO

#	Article	IF	CITATIONS
55	TSS seq based core promoter architecture in blood feeding Tsetse fly (Glossina morsitans morsitans) vector of Trypanosomiasis. BMC Genomics, 2015, 16, 722.	2.8	6
56	Putting invertebrate lactation in context. Science, 2019, 363, 593-593.	12.6	6
57	Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in Aedes albopictus. Frontiers in Microbiology, 2020, 11, 559035.	3.5	6
58	Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans (Westwood) by Three-Dimensional Analysis. Insects, 2020, 11, 651.	2.2	6
59	Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biology, 2021, 19, 211.	3.8	5
60	Mechanisms that contribute to the establishment and persistence of bed bug infestations. Terrestrial Arthropod Reviews, 2013, 6, 227-246.	0.8	3
61	Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetseâ€ŧransmitted trypanosomiasis control. Entomological Research, 2007, 37, 231-237.	1.1	2
62	Promoting the integrated community case management of pneumonia in children under 5Âyears in Nigeria through the proprietary and patent medicine vendors: a cost-effectiveness analysis. Cost Effectiveness and Resource Allocation, 2021, 19, 12.	1.5	2
63	Editorial overview: Vectors and medical and veterinary entomology: Becoming vectors or victims, the intriguing interplay between insects and viruses. Current Opinion in Insect Science, 2017, 22, v-vii.	4.4	0
64	Insect-protozoa-bacteria associations: a model system for investigating host-parasite interactions , 2009, , 223-240.		0
65	Obligate symbiont-generated vitamin B6 is critical to maintain proline homeostasis and fecundity in the tsetse fly (Glossina morsitans). , 2016, , .		0
66	Tsetse flies (Glossinidae). , 2020, , .		0