Anna Maria Fiore-Donno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605432/publications.pdf

Version: 2024-02-01

44 papers

2,677 citations

236833 25 h-index 254106 43 g-index

50 all docs 50 docs citations

50 times ranked

2848 citing authors

#	Article	IF	CITATIONS
1	Soil compartments (bulk soil, litter, root and rhizosphere) as main drivers of soil protistan communities distribution in forests with different nitrogen deposition. Soil Biology and Biochemistry, 2022, 168, 108628.	4.2	19
2	Ecological clusters of soil taxa within bipartite networks are highly sensitive to climatic conditions in global drylands. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	4
3	Different community compositions between obligate and facultative oomycete plant parasites in a landscape-scale metabarcoding survey. Biology and Fertility of Soils, 2021, 57, 245-256.	2.3	21
4	A Parasite's Paradise: Biotrophic Species Prevail Oomycete Community Composition in Tree Canopies. Frontiers in Forests and Global Change, 2021, 4, .	1.0	2
5	On the phenology of protists: recurrent patterns reveal seasonal variation of protistan (Rhizaria:) Tj ETQq1 1 0.784	1314 rgBT	/Overlock 1
6	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	5.8	81
7	Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Molecular Ecology Resources, 2020, 20, 398-403.	2.2	66
8	Phylogeny of Physarida (Amoebozoa, Myxogastria) Based on the Smallâ€Subunit Ribosomal RNA Gene, Redefinition of <i>Physarum pusillum</i> s. str. and Reinstatement of <i>P.Âgravidum</i> Morgan. Journal of Eukaryotic Microbiology, 2020, 67, 327-336.	0.8	10
9	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	3.3	164
10	Contrasting Responses of Protistan Plant Parasites and Phagotrophs to Ecosystems, Land Management and Soil Properties. Frontiers in Microbiology, 2020, 11, 1823.	1.5	27
11	From Forest Soil to the Canopy: Increased Habitat Diversity Does Not Increase Species Richness of Cercozoa and Oomycota in Tree Canopies. Frontiers in Microbiology, 2020, 11, 592189.	1.5	7
12	Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology, 2020, 96, .	1.3	77
13	New insights into the phylogeny of the dark-spored Myxomycetes (Amoebozoa: Conosa: Myxogastria:) Tj ETQq1 1 228-236.		1 rgBT /Over 7
14	Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria:) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 222 To
15	Metatranscriptomics reveals unsuspected protistan diversity in leaf litter across temperate beech forests, with Amoebozoa the dominating lineage. FEMS Microbiology Ecology, 2019, 95, .	1.3	23
16	Distinct communities of Cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiology Ecology, 2019, 95, .	1.3	21
17	A Nonâ€Flagellated Member of the Myxogastria and Expansion of the Echinosteliida. Journal of Eukaryotic Microbiology, 2019, 66, 538-544.	0.8	19
18	The Protists in Soilâ€"A Token of Untold Eukaryotic Diversity. , 2019, , 125-140.		15

#	Article	IF	CITATIONS
19	New barcoded primers for efficient retrieval of cercozoan sequences in highâ€throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Molecular Ecology Resources, 2018, 18, 229-239.	2.2	71
20	Protists are an integral part of the <i>Arabidopsis thaliana</i> Microbiology, 2018, 20, 30-43.	1.8	85
21	Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 2017, 111, 94-103.	4.2	130
22	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	1.1	15
23	Phylogeny of the Highly Divergent Echinosteliales (Amoebozoa). Journal of Eukaryotic Microbiology, 2016, 63, 453-459.	0.8	19
24	Metacommunity analysis of amoeboid protists in grassland soils. Scientific Reports, 2016, 6, 19068.	1.6	82
25	Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida,) Tj ETQq $1\ 1\ 0.784$	314 rgBT 1.9	/Overlock 10
26	First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiology Ecology, 2015, 91, .	1.3	23
27	Multigene phylogeny resolves deep branching of Amoebozoa. Molecular Phylogenetics and Evolution, 2015, 83, 293-304.	1.2	84
28	Using environmental niche models to test the â€~everything is everywhere' hypothesis for <i>Badhamia</i> . ISME Journal, 2014, 8, 737-745.	4.4	55
29	Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitology Research, 2014, 113, 3151-3158.	0.6	75
30	Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals,) Tj ETQq0 0 0 rg	;BT_lOverle	ock 10 Tf 50 3
31	Phylogenetic position of the enigmatic myxomycete genus Kelleromyxa revealed by SSU rDNA sequences. Mycological Progress, 2013, 12, 599-608.	0.5	24
32	Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiology Ecology, 2013, 84, 98-109.	1.3	34
33	Two-Gene Phylogeny of Bright-Spored Myxomycetes (Slime Moulds, Superorder Lucisporidia). PLoS ONE, 2013, 8, e62586.	1.1	58
34	CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms. PLoS Biology, 2012, 10, e1001419.	2.6	488
35	18S rDNA Phylogeny of Lamproderma and Allied Genera (Stemonitales, Myxomycetes, Amoebozoa). PLoS ONE, 2012, 7, e35359.	1.1	75
36	Genetic Structure of Two Protist Species (Myxogastria, Amoebozoa) Suggests Asexual Reproduction in Sexual Amoebae. PLoS ONE, 2011, 6, e22872.	1.1	47

#	Article	IF	CITATIONS
37	Myxomycetes in soil. Soil Biology and Biochemistry, 2011, 43, 2237-2242.	4.2	52
38	Deep Phylogeny and Evolution of Slime Moulds (Mycetozoa). Protist, 2010, 161, 55-70.	0.6	122
39	Invalidation of <i>Hyperamoeba</i> by Transferring its Species to Other Genera of Myxogastria. Journal of Eukaryotic Microbiology, 2010, 57, 189-196.	0.8	25
40	Ecology of sandstone ravine myxomycetes from Saxonian Switzerland (Germany). Nova Hedwigia, 2010, 90, 277-302.	0.2	15
41	<i>Semimorula liquescens</i> is a modified echinostelid myxomycete (Mycetozoa). Mycologia, 2009, 101, 773-776.	0.8	20
42	Evolution of dark-spored Myxomycetes (slime-molds): Molecules versus morphology. Molecular Phylogenetics and Evolution, 2008, 46, 878-889.	1.2	96
43	Higherâ€Order Phylogeny of Plasmodial Slime Molds (Myxogastria) Based on Elongation Factor 1â€A and Small Subunit rRNA Gene Sequences. Journal of Eukaryotic Microbiology, 2005, 52, 201-210.	0.8	84
44	Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytologist, 2001, 152, 533-542.	3.5	85