José MarÃ-a Navas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6053977/publications.pdf

Version: 2024-02-01

98 papers 3,692 citations

34 h-index 58 g-index

104 all docs

104 docs citations

104 times ranked 5447 citing authors

#	Article	IF	CITATIONS
1	Fish cell lines as screening tools to predict acute toxicity to fish of biocidal active substances and their relevant environmental metabolites. Aquatic Toxicology, 2022, 242, 106020.	1.9	9
2	Cytotoxicity of three graphene-related materials in rainbow trout primary hepatocytes is not associated to cellular internalization. Ecotoxicology and Environmental Safety, 2022, 231, 113227.	2.9	7
3	Populus alba L., an Autochthonous Species of Spain: A Source for Cellulose Nanofibers by Chemical Pretreatment. Polymers, 2022, 14, 68.	2.0	4
4	Towards FAIR nanosafety data. Nature Nanotechnology, 2021, 16, 644-654.	15.6	61
5	Liver biomarkers response of the neotropical fish Aequidens metae to environmental stressors associated with the oil industry. Heliyon, 2021, 7, e07458.	1.4	5
6	Summary of the special issue. Science of the Total Environment, 2020, 706, 134934.	3.9	0
7	Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 2020, 20, 100267.	2.4	22
8	Toxicity characterization of surface sediments from a Mediterranean coastal lagoon. Chemosphere, 2020, 253, 126710.	4.2	3
9	Investigating the Impact of Manufacturing Processes on the Ecotoxicity of Carbon Nanofibers: A Multi–Aquatic Species Comparison. Environmental Toxicology and Chemistry, 2019, 38, 2314-2325.	2.2	9
10	Nanomaterial grouping: Existing approaches and future recommendations. NanoImpact, 2019, 16, 100182.	2.4	42
11	Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food and Chemical Toxicology, 2019, 127, 288-297.	1.8	20
12	Acute toxic effects caused by the co-exposure of nanoparticles of ZnO and Cu in rainbow trout. Science of the Total Environment, 2019, 687, 24-33.	3.9	15
13	Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). Chemosphere, 2019, 218, 347-358.	4.2	38
14	Determining the presence of chemicals with suspected endocrine activity in drinking water from the Madrid region (Spain) and assessment of their estrogenic, androgenic and thyroidal activities. Chemosphere, 2018, 201, 388-398.	4.2	44
15	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Environmental Environm	4.6	36
16	Development of a new tool for the long term in vitro ecotoxicity testing of nanomaterials using a rainbow-trout cell line (RTL-W1). Toxicology in Vitro, 2018, 50, 305-317.	1.1	14
17	Toward sustainable environmental quality: Identifying priority research questions for Latin America. Integrated Environmental Assessment and Management, 2018, 14, 344-357.	1.6	79
18	Quality evaluation of human and environmental toxicity studies performed with nanomaterials $\hat{a} \in \text{``the GUIDE}$ the GUIDE and approach. Environmental Science: Nano, 2018, 5, 381-397.	2.2	48

#	Article	IF	Citations
19	Proposal for a tiered dietary bioaccumulation testing strategy for engineered nanomaterials using fish. Environmental Science: Nano, 2018, 5, 2030-2046.	2.2	23
20	Androgens and androgenic activity in broiler manure assessed by means of chemical analyses and in vitro bioassays. Environmental Toxicology and Chemistry, 2017, 36, 1746-1754.	2.2	4
21	Remediation efficiency of three treatments on water polluted with endocrine disruptors: Assessment by means of inÂvitro techniques. Chemosphere, 2017, 173, 267-274.	4.2	7
22	Induction of EROD and BFCOD activities in tissues of barbel (Barbus callensis) from a water reservoir in Algeria. Ecotoxicology and Environmental Safety, 2017, 142, 129-138.	2.9	6
23	Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines. Ecotoxicology and Environmental Safety, 2017, 138, 309-319.	2.9	30
24	Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regulatory Toxicology and Pharmacology, 2017, 90, 297-307.	1.3	21
25	Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10.	6.2	21
26	Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools. Ecotoxicology and Environmental Safety, 2017, 145, 539-548.	2.9	24
27	Mechanisms underlying the enhancement of toxicity caused by the coincubation of zinc oxide and copper nanoparticles in a fish hepatoma cell line. Environmental Toxicology and Chemistry, 2016, 35, 2562-2570.	2.2	11
28	Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology, 2016, 10, 1442-1447.	1.6	103
29	Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 190, 54-65.	1.3	16
30	InÂvitro toxicity of reuterin, a potential food biopreservative. Food and Chemical Toxicology, 2016, 96, 155-159.	1.8	13
31	Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss). Aquatic Toxicology, 2016, 174, 159-168.	1.9	13
32	Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of the Total Environment, 2016, 551-552, 334-343.	3.9	93
33	Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes. International Journal of Environmental Research and Public Health, 2015, 12, 5386-5405.	1.2	57
34	Detection of Effects Caused by Very Low Levels of Contaminants in Riverine Sediments Through a Combination of Chemical Analysis, In Vitro Bioassays, and Farmed Fish as Sentinel. Archives of Environmental Contamination and Toxicology, 2015, 68, 663-677.	2.1	7
35	Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: An investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity. Chemico-Biological Interactions, 2015, 228, 57-68.	1.7	5
36	Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	12

#	Article	IF	CITATIONS
37	Effects of aflatoxin B1, fumonisin B1 and their mixture on the aryl hydrocarbon receptor and cytochrome P450 1A induction. Food and Chemical Toxicology, 2015, 75, 104-111.	1.8	51
38	Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1. Environmental Toxicology, 2015, 30, 1192-1204.	2.1	24
39	The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Science of the Total Environment, 2015, 505, 253-260.	3.9	52
40	Experimental and Theoretical Studies in the EU FP7 Marie Curie Initial Training Network Project, Environmental ChemOinformatics (ECO). ATLA Alternatives To Laboratory Animals, 2014, 42, 7-11.	0.7	3
41	Chlorotriazines Do Not Activate the Aryl Hydrocarbon Receptor, the Oestrogen Receptor or the Thyroid Receptor in In Vitro Assays. ATLA Alternatives To Laboratory Animals, 2014, 42, 25-30.	0.7	5
42	Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1. Aquatic Toxicology, 2014, 150, 55-65.	1.9	52
43	Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology, 2014, 8, 92-99.	1.6	22
44	Thyroid signaling in immune organs and cells of the teleost fish rainbow trout (Oncorhynchus) Tj ETQq0 0 0 rgB1	-/Qverlock	10 Tf 50 462
45	Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. Science of the Total Environment, 2014, 470-471, 379-389.	3.9	68
46	In vitro assessment of thyroidal and estrogenic activities in poultry and broiler manure. Science of the Total Environment, 2014, 472, 630-641.	3.9	14
47	Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 2014, 8, 383-393.	1.6	91
48	Non-destructive Multibiomarker Approach in European Quail (Coturnix coturnix coturnix) Exposed to the Herbicide Atrazine. Archives of Environmental Contamination and Toxicology, 2013, 65, 567-574.	2.1	4
49	Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Particle and Fibre Toxicology, 2013, 10, 27.	2.8	342
50	Use of fish farms to assess river contamination: Combining biomarker responses, active biomonitoring, and chemical analysis. Aquatic Toxicology, 2013, 140-141, 439-448.	1.9	20
51	Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions. Nanoscale Research Letters, 2013, 8, 315.	3.1	3
52	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	1.3	139
53	Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Aquatic Toxicology, 2013, 130-131, 174-183.	1.9	57
54	Cytological, immunocytochemical, ultrastructural and growth characterization of the rainbow trout liver cell line RTL-W1. Tissue and Cell, 2013, 45, 159-174.	1.0	18

#	Article	IF	CITATIONS
55	Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2. Nanotoxicology, 2013, 7, 935-952.	1.6	53
56	Analysis of synthetic endocrine-disrupting chemicals in food: A review. Talanta, 2012, 100, 90-106.	2.9	50
57	In vitro dose–response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography–hybrid quadrupole/time-of-flight mass spectrometry based method. Analytical and Bioanalytical Chemistry. 2012. 404. 2749-2763.	1.9	12
58	Assessment of estrogenic and thyrogenic activities in fish feeds. Aquaculture, 2012, 338-341, 172-180.	1.7	19
59	Induction of detoxification processes in Oncorhynchus mykiss by trace levels of contaminants. Comparative Biochemistry and Physiology Part A, Molecular & Entry Integrative Physiology, 2012, 163, S13.	0.8	0
60	Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix) Tj ETQq0 0 159-165.	0 rgBT /O	verlock 10 Tf 28
61	Effects of cerium oxide nanoparticles to fish and mammalian cell lines: An assessment of cytotoxicity and methodology. Toxicology in Vitro, 2012, 26, 888-896.	1.1	33
62	Differences in the induction of <i>cyp1A</i> and related genes in cultured rainbow trout <i>Oncorhynchus mykiss.</i> Additional considerations for the use of EROD activity as a biomarker. Journal of Fish Biology, 2012, 81, 270-287.	0.7	22
63	Biological and chemical studies on aryl hydrocarbon receptor induction by the p53 inhibitor pifithrin- \hat{l}^{\pm} and its condensation product pifithrin- \hat{l}^{2} . Life Sciences, 2011, 88, 774-783.	2.0	14
64	Aryl hydrocarbon receptor induction by alpha- and ss-pifithrin. Toxicology Letters, 2010, 196, S258.	0.4	0
65	Use of a novel battery of bioassays for the biological characterisation of hazardous wastes. Ecotoxicology and Environmental Safety, 2009, 72, 1594-1600.	2.9	23
66	Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. Aquatic Toxicology, 2009, 94, 16-27.	1.9	49
67	Toxic effects of an oil spill on fish early life stages may not be exclusively associated to PAHs: Studies with Prestige oil and medaka (Oryzias latipes). Aquatic Toxicology, 2008, 87, 280-288.	1.9	73
68	Decabromobiphenyl (PBB-209) Activates the Aryl Hydrocarbon Receptor While Decachlorobiphenyl (PCB-209) Is Inactive: Experimental Evidence and Computational Rationalization of the Different Behavior of Some Halogenated Biphenyls. Chemical Research in Toxicology, 2008, 21, 643-658.	1.7	19
69	<i>In-vitro</i> screening of the antiestrogenic activity of chemicals. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 605-617.	1.5	3
70	Induction of EROD activity by 1-phenylimidazole and \hat{l}^2 -naphthoflavone in rainbow trout cultured hepatocytes: A comparative study. Toxicology in Vitro, 2007, 21, 1307-1310.	1.1	6
71	Modulation of aryl hydrocarbon receptor transactivation by carbaryl, a nonconventional ligand. FEBS Journal, 2007, 274, 3327-3339.	2.2	20
72	Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. Aquatic Toxicology, 2006, 80, 1-22.	1.9	84

#	Article	IF	CITATIONS
73	The Prestige oil spill: A laboratory study about the toxicity of the water-soluble fraction of the fuel oil. Marine Environmental Research, 2006, 62, S352-S355.	1.1	31
74	ACTIVATION OF THE ARYL HYDROCARBON RECEPTOR BY CARBARYL: COMPUTATIONAL EVIDENCE OF THE ABILITY OF CARBARYL TO ASSUME A PLANAR CONFORMATION. Environmental Toxicology and Chemistry, 2006, 25, 3141.	2.2	16
75	Cytochrome P4501A induction caused by the imidazole derivative Prochloraz in a rainbow trout cell line. Toxicology in Vitro, 2005, 19, 899-902.	1.1	35
76	Organochlorine compounds in liver and concentrations of vitellogenin and $17\hat{l}^2$ -estradiol in plasma of sea bass fed with a commercial or with a natural diet. Aquatic Toxicology, 2005, 75, 306-15.	1.9	8
77	Studies on aromatic compounds: inhibition of calpain I by biphenyl derivatives and peptide-biphenyl hybrids. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2753-2757.	1.0	21
78	Induction of cytochrome P4501A (CYP1A) by clotrimazole, a non-planar aromatic compound. Computational studies on structural features of clotrimazole and related imidazole derivatives. Life Sciences, 2004, 76, 699-714.	2.0	32
79	\hat{l}^2 -Naphthoflavone alters normal plasma levels of vitellogenin, $17\hat{l}^2$ -estradiol and luteinizing hormone in sea bass broodstock. Aquatic Toxicology, 2004, 67, 337-345.	1.9	41
80	Luteinizing hormone plasma levels in male European sea bass (Dicentrarchus labrax L.) feeding diets with different fatty acid composition. Ciencias Marinas, 2004, 30, 527-536.	0.4	3
81	Induction of CYP1A by the <i>N</i> >â€imidazole derivative, 1â€benzylimidazole. Environmental Toxicology and Chemistry, 2003, 22, 830-836.	2.2	20
82	Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo. Ecotoxicology and Environmental Safety, 2003, 54, 315-322.	2.9	119
83	INDUCTION OF CYP1A BY THE N-IMIDAZOLE DERIVATIVE, 1-BENZYLIMIDAZOLE. Environmental Toxicology and Chemistry, 2003, 22, 830.	2.2	11
84	Estrogen-mediated suppression of cytochrome P4501A (CYP1A) expression in rainbow trout hepatocytes: role of estrogen receptor. Chemico-Biological Interactions, 2001, 138, 285-298.	1.7	120
85	Total lipid in the broodstock diet did not affect fatty acid composition and quality of eggs of sea bass (<i>Dicentrarchus labrax</i> L.). Scientia Marina, 2001, 65, 11-19.	0.3	14
86	Modulation of trout 7-ethoxyresorufin-O-deethylase (EROD) activity by estradiol and octylphenol. Marine Environmental Research, 2000, 50, 157-162.	1.1	48
87	Antiestrogenicity of \hat{l}^2 -naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. Aquatic Toxicology, 2000, 51, 79-92.	1.9	133
88	Linear Alkylbenzene Sulfonates and Intermediate Products from their Degradation are not Estrogenic. Marine Pollution Bulletin, 1999, 38, 880-884.	2.3	17
89	Antiestrogenic activity of anthropogenic and natural chemicals. Environmental Science and Pollution Research, 1998, 5, 75-82.	2.7	56
90	Effect of dietary lipid composition on vitellogenin, $17\hat{l}^2$ -estradiol and gonadotropin plasma levels and spawning performance in captive sea bass (Dicentrarchus labrax L.). Aquaculture, 1998, 165, 65-79.	1.7	59

#	Article	IF	CITATIONS
91	Evaluation of Xenoestrogenic Effects in Fish on Different Organization Levels. Advances in Experimental Medicine and Biology, 1998, 444, 207-214.	0.8	3
92	Title is missing!. Scientia Marina, 1998, 62, .	0.3	9
93	Effects of broodstock dietary lipid on fatty acid compositions of eggs from sea bass (Dicentrarchus) Tj ETQq1 1	0.78 <u>4</u> 314	rgBT /Overlo
94	The impact of seasonal alteration in the lipid composition of broodstock diets on egg quality in the European sea bass. Journal of Fish Biology, 1997, 51, 760-773.	0.7	117
95	The impact of seasonal alteration in the lipid composition of broodstock diets on egg quality in the European sea bass., 1997, 51, 760.		11
96	Estrogen Receptors Are Expressed in a Subset of Tyrosine Hydroxylase-Positive Neurons of the Anterior Preoptic Region in the Rainbow Trout. Neuroendocrinology, 1996, 63, 156-165.	1.2	86
97	Do gonadotrophin-releasing hormone neurons express estrogen receptors in the rainbow trout? A double immunohistochemical study. Journal of Comparative Neurology, 1995, 363, 461-474.	0.9	86
98	Exocrine pancreatic response to intraduodenal fatty acids and fats in rabbits. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 105, 141-145.	0.7	2