
Michiaki Kohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6053560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene, 1999, 18, 813-822.	2.6	625
2	Targeting the ERK signaling pathway in cancer therapy. Annals of Medicine, 2006, 38, 200-211.	1.5	357
3	Specific Activation of the p38 Mitogen-activated Protein Kinase Signaling Pathway and Induction of Neurite Outgrowth in PC12 Cells by Bone Morphogenetic Protein-2. Journal of Biological Chemistry, 1999, 274, 26503-26510.	1.6	193
4	Extracellular Signal–Regulated Kinase Inhibition Slows Disease Progression in Mice with Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2006, 17, 1604-1614.	3.0	133
5	Blockade of the Extracellular Signal-regulated Kinase Pathway Induces Marked G1 Cell Cycle Arrest and Apoptosis in Tumor Cells in Which the Pathway Is Constitutively Activated. Journal of Biological Chemistry, 2001, 276, 2686-2692.	1.6	119
6	Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E643-E651.	1.8	115
7	ERK Pathway Positively Regulates the Expression of Sprouty Genes. Biochemical and Biophysical Research Communications, 2001, 285, 1084-1088.	1.0	101
8	Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Oncogene, 1998, 17, 57-65.	2.6	95
9	Characterization of the Bone Morphogenetic Protein-2 as a Neurotrophic Factor. Journal of Biological Chemistry, 1996, 271, 17360-17365.	1.6	92
10	GEF-H1 Mediates Tumor Necrosis Factor-α-induced Rho Activation and Myosin Phosphorylation. Journal of Biological Chemistry, 2009, 284, 11454-11466.	1.6	84
11	Distribution and Characterization of Specific Cellular Binding Proteins for Bone Morphogenetic Protein-2. Journal of Biological Chemistry, 1995, 270, 5476-5482.	1.6	83
12	Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44. Biochemical and Biophysical Research Communications, 2003, 304, 801-806.	1.0	80
13	Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with crossâ€resistance to a wide range of DNAâ€damaging drugs. Cancer Science, 2008, 99, 376-384.	1.7	79
14	ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochemical and Biophysical Research Communications, 2008, 368, 162-167.	1.0	65
15	Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochemical and Biophysical Research Communications, 2005, 330, 1306-1313.	1.0	61
16	Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Progress in Cell Cycle Research, 2003, 5, 219-24.	0.9	58
17	Prolonged Nuclear Retention of Activated Extracellular Signal-regulated Kinase 1/2 Is Required for Hepatocyte Growth Factor-induced Cell Motility. Journal of Biological Chemistry, 2002, 277, 28256-28264.	1.6	56
18	Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. Journal of Cell Science, 2005, 118, 5861-5871.	1.2	54

Місніакі Конло

#	Article	IF	CITATIONS
19	Targeting the Extracellular Signal-Regulated Kinase Pathway in Cancer Therapy. Biological and Pharmaceutical Bulletin, 2011, 34, 1781-1784.	0.6	54
20	Synthesis and structure–activity relationships of thioflavone derivatives as specific inhibitors of the ERK-MAP kinase signaling pathway. Bioorganic and Medicinal Chemistry, 2004, 12, 2397-2407.	1.4	46
21	Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrology Dialysis Transplantation, 2012, 27, 1351-1358.	0.4	46
22	Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death. Biochemical and Biophysical Research Communications, 2006, 339, 1171-1177.	1.0	44
23	Blockade of the ERK or PI3K–Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib. Biochemical and Biophysical Research Communications, 2010, 391, 1610-1615.	1.0	42
24	Cell Type-specific Modulation of Cell Growth by Transforming Growth Factor β1 Does Not Correlate with Mitogen-activated Protein Kinase Activation. Journal of Biological Chemistry, 1995, 270, 30686-30692.	1.6	40
25	Bone Morphogenetic Protein-2 Promotes Survival and Differentiation of Striatal GABAergic Neurons in the Absence of Glial Cell Proliferation. Journal of Neurochemistry, 2002, 72, 2264-2271.	2.1	38
26	Blockade of the phosphatidylinositol-3-kinase–Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated. Molecular Cancer Therapeutics, 2007, 6, 1133-1142.	1.9	38
27	Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner. Biochemical and Biophysical Research Communications, 2006, 340, 560-566.	1.0	36
28	Requirement for ERK MAP kinase in mouse preimplantation development. Development (Cambridge), 2007, 134, 2751-2759.	1.2	33
29	ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. Journal of Cell Biology, 2016, 214, 475-489.	2.3	29
30	Anticancer Drugs Up-regulate HspBP1 and Thereby Antagonize the Prosurvival Function of Hsp70 in Tumor Cells. Journal of Biological Chemistry, 2007, 282, 35430-35439.	1.6	28
31	SH3P2 is a negative regulator of cell motility whose function is inhibited by ribosomal S6 kinase-mediated phosphorylation. Genes To Cells, 2011, 16, 514-526.	0.5	23
32	Up-regulation of Pro-apoptotic Protein Bim and Down-regulation of Anti-apoptotic Protein Mcl-1 Cooperatively Mediate Enhanced Tumor Cell Death Induced by the Combination of ERK Kinase (MEK) Inhibitor and Microtubule Inhibitor. Journal of Biological Chemistry, 2012, 287, 10289-10300.	1.6	22
33	Enantioselective Total Synthesis of (+)â€Ottelione A, (â^')â€Ottelione B, (+)â€3â€ <i>epi</i> â€Ottelione A and Preliminary Evaluation of Their Antitumor Activity. Chemistry - A European Journal, 2007, 13, 9866-9881.	1.7	21
34	Blockade of constitutively activated ERK signaling enhances cytotoxicity of microtubule-destabilizing agents in tumor cells. Biochemical and Biophysical Research Communications, 2009, 378, 650-655.	1.0	16
35	ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice. Acta Histochemica Et Cytochemica, 2009, 42, 39-45.	0.8	16
36	Blockade of the Extracellular Signal-Regulated Kinase Pathway Enhances the Therapeutic Efficacy of Microtubule-Destabilizing Agents in Human Tumor Xenograft Models. Clinical Cancer Research, 2010, 16, 1170-1178.	3.2	15

Місніакі Конло

#	Article	IF	CITATIONS
37	Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models. Biochemical and Biophysical Research Communications, 2013, 433, 456-462.	1.0	15
38	Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state. International Journal of Urology, 2005, 12, 899-905.	0.5	14
39	Activation of protein phosphatase causes alternative splicing of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): Potential effect on immune surveillance. Biochemical and Biophysical Research Communications, 2007, 360, 280-285.	1.0	10
40	Peumusolide A, unprecedented NES non-antagonistic inhibitor for nuclear export of MEK. Tetrahedron Letters, 2010, 51, 1678-1681.	0.7	10
41	KGFR as a possible therapeutic target in middle ear cholesteatoma. Acta Oto-Laryngologica, 2014, 134, 1121-1127.	0.3	10