Carlo Napolitano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6053292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genotype-Phenotype Correlation in the Long-QT Syndrome. Circulation, 2001, 103, 89-95.	1.6	1,641
2	CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism. Cell, 2004, 119, 19-31.	13.5	1,403
3	Risk Stratification in the Long-QT Syndrome. New England Journal of Medicine, 2003, 348, 1866-1874.	13.9	1,314
4	Mutations in the Cardiac Ryanodine Receptor Gene (<i>hRyR2</i>) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2001, 103, 196-200.	1.6	1,291
5	Clinical and Molecular Characterization of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2002, 106, 69-74.	1.6	1,103
6	Natural History of Brugada Syndrome. Circulation, 2002, 105, 1342-1347.	1.6	984
7	Low Penetrance in the Long-QT Syndrome. Circulation, 1999, 99, 529-533.	1.6	783
8	Effectiveness and Limitations of β-Blocker Therapy in Congenital Long-QT Syndrome. Circulation, 2000, 101, 616-623.	1.6	783
9	Influence of the Genotype on the Clinical Course of the Long-QT Syndrome. New England Journal of Medicine, 1998, 339, 960-965.	13.9	728
10	Long QT Syndrome Patients With Mutations of the <i>SCN5A</i> and <i>HERG</i> Genes Have Differential Responses to Na ⁺ Channel Blockade and to Increases in Heart Rate. Circulation, 1995, 92, 3381-3386.	1.6	689
11	FKBP12.6 Deficiency and Defective Calcium Release Channel (Ryanodine Receptor) Function Linked to Exercise-Induced Sudden Cardiac Death. Cell, 2003, 113, 829-840.	13.5	683
12	Left Cardiac Sympathetic Denervation in the Management of High-Risk Patients Affected by the Long-QT Syndrome. Circulation, 2004, 109, 1826-1833.	1.6	600
13	A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene. Circulation Research, 2005, 96, 800-807.	2.0	575
14	Association of Long QT Syndrome Loci and Cardiac Events Among Patients Treated With β-Blockers. JAMA - Journal of the American Medical Association, 2004, 292, 1341.	3.8	538
15	Risk Stratification in Brugada Syndrome. Journal of the American College of Cardiology, 2012, 59, 37-45.	1.2	523
16	Clinical and Genetic Heterogeneity of Right Bundle Branch Block and ST-Segment Elevation Syndrome. Circulation, 2000, 102, 2509-2515.	1.6	490
17	Age- and Sex-Related Differences in Clinical Manifestations in Patients With Congenital Long-QT Syndrome. Circulation, 1998, 97, 2237-2244.	1.6	451
18	Genetic Testing in the Long QT Syndrome. JAMA - Journal of the American Medical Association, 2005, 294, 2975.	3.8	413

#	Article	IF	CITATIONS
19	Spectrum of ST-T–Wave Patterns and Repolarization Parameters in Congenital Long-QT Syndrome. Circulation, 2000, 102, 2849-2855.	1.6	409
20	Long QT Syndrome in Adults. Journal of the American College of Cardiology, 2007, 49, 329-337.	1.2	369
21	Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome Circulation, 1994, 89, 1681-1689.	1.6	356
22	Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17533-17538.	3.3	349
23	A Molecular Link between the Sudden Infant Death Syndrome and the Long-QT Syndrome. New England Journal of Medicine, 2000, 343, 262-267.	13.9	340
24	Venice Chart International Consensus Document on Atrial Fibrillation Ablation. Journal of Cardiovascular Electrophysiology, 2007, 18, 560-580.	0.8	337
25	Cardiac Histological Substrate in Patients With Clinical Phenotype of Brugada Syndrome. Circulation, 2005, 112, 3680-3687.	1.6	317
26	Evidence for a Cardiac Ion Channel Mutation Underlying Drug-Induced QT Prolongation and Life-Threatening Arrhythmias. Journal of Cardiovascular Electrophysiology, 2000, 11, 691-696.	0.8	312
27	Missense Mutations in Plakophilin-2 Cause Sodium Current Deficit and Associate With a Brugada Syndrome Phenotype. Circulation, 2014, 129, 1092-1103.	1.6	305
28	A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9137-9142.	3.3	301
29	Long QT Syndrome and Pregnancy. Journal of the American College of Cardiology, 2007, 49, 1092-1098.	1.2	299
30	Arrhythmogenesis in Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2006, 99, 292-298.	2.0	293
31	High Efficacy of Î ² -Blockers in Long-QT Syndrome Type 1. Circulation, 2009, 119, 215-221.	1.6	274
32	Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed Long-QT Syndrome and Normal-Range Corrected QT Intervals. Journal of the American College of Cardiology, 2011, 57, 51-59.	1.2	268
33	Risk of Aborted Cardiac Arrest or Sudden Cardiac Death During Adolescence in the Long-QT Syndrome. JAMA - Journal of the American Medical Association, 2006, 296, 1249.	3.8	258
34	Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 2003, 42, 103-109.	1.2	257
35	Risk Factors for Aborted Cardiac Arrest and Sudden Cardiac Death in Children With the Congenital Long-QT Syndrome. Circulation, 2008, 117, 2184-2191.	1.6	255
36	Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2007, 101, 1039-1048.	2.0	252

#	Article	IF	CITATIONS
37	Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor. Circulation Research, 2005, 96, e77-82.	2.0	247
38	Brugada syndrome and sudden cardiac death in children. Lancet, The, 2000, 355, 808-809.	6.3	244
39	The Elusive Link Between LQT3 and Brugada Syndrome. Circulation, 2000, 102, 945-947.	1.6	243
40	Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. American Journal of Cardiology, 1999, 84, 876-879.	0.7	219
41	Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. Journal of the American College of Cardiology, 2003, 41, 633-642.	1.2	201
42	Patients With an Asymptomatic Brugada Electrocardiogram Should Undergo Pharmacological and Electrophysiological Testing. Circulation, 2005, 112, 279-292.	1.6	201
43	Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome. Circulation, 2016, 133, 622-630.	1.6	201
44	Gating Properties of <i>SCN5A</i> Mutations and the Response to Mexiletine in Long-QT Syndrome Type 3 Patients. Circulation, 2007, 116, 1137-1144.	1.6	194
45	Novel Insight Into the Natural History of Short QT Syndrome. Journal of the American College of Cardiology, 2014, 63, 1300-1308.	1.2	191
46	Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3. Journal of the American College of Cardiology, 2016, 67, 1053-1058.	1.2	191
47	Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2006, 114, 1012-1019.	1.6	189
48	Inherited Brugada and Long QT-3 Syndrome Mutations of a Single Residue of the Cardiac Sodium Channel Confer Distinct Channel and Clinical Phenotypes. Journal of Biological Chemistry, 2001, 276, 30623-30630.	1.6	181
49	Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death. Circulation Research, 2006, 98, 1151-1158.	2.0	179
50	Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. Journal of Clinical Investigation, 2002, 110, 1201-1209.	3.9	172
51	Cellular Dysfunction of LQT5-MinK Mutants: Abnormalities of IKs, IKr and Trafficking in Long QT Syndrome. Human Molecular Genetics, 1999, 8, 1499-1507.	1.4	170
52	Polymorphisms in the NOS1APGene Modulate QT Interval Duration and Risk of Arrhythmias in the Long QT Syndrome. Journal of the American College of Cardiology, 2010, 55, 2745-2752.	1.2	163
53	SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm, 2020, 17, 1456-1462.	0.3	162
54	Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin. Circulation Research, 2004, 94, 471-477.	2.0	158

#	Article	IF	CITATIONS
55	Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nature Reviews Cardiology, 2012, 9, 561-575.	6.1	158
56	Molecular diagnosis in a child with sudden infant death syndrome. Lancet, The, 2001, 358, 1342-1343.	6.3	157
57	Catecholaminergic Polymorphic Ventricular Tachycardia. Progress in Cardiovascular Diseases, 2008, 51, 23-30.	1.6	156
58	Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. European Heart Journal, 2009, 30, 2241-2248.	1.0	156
59	Evaluation of the Spatial Aspects of T-Wave Complexity in the Long-QT Syndrome. Circulation, 1997, 96, 3006-3012.	1.6	151
60	Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 2540-2550.	1.2	148
61	Differential Response to Na ⁺ Channel Blockade, β-Adrenergic Stimulation, and Rapid Pacing in a Cellular Model Mimicking the SCN5A and HERG Defects Present in the Long-QT Syndrome. Circulation Research, 1996, 78, 1009-1015.	2.0	148
62	A Recessive Variant of the Romano-Ward Long-QT Syndrome?. Circulation, 1998, 97, 2420-2425.	1.6	139
63	Increased Ca ²⁺ Sensitivity of the Ryanodine Receptor Mutant RyR2 ^{R4496C} Underlies Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2009, 104, 201-209.	2.0	137
64	Interplay Between Genetic Substrate, QTcÂDuration, and Arrhythmia Risk in Patients With Long QT Syndrome. Journal of the American College of Cardiology, 2018, 71, 1663-1671.	1.2	137
65	Long-QT Syndrome After Age 40. Circulation, 2008, 117, 2192-2201.	1.6	134
66	Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2007, 4, 675-678.	0.3	133
67	Sudden Cardiac Death and Genetic Ion Channelopathies. Circulation, 2012, 125, 2027-2034.	1.6	133
68	Yield of Genetic Screening in Inherited Cardiac Channelopathies. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 6-15.	2.1	131
69	Unexpected Structural and Functional Consequences of the R33Q Homozygous Mutation in Cardiac Calsequestrin. Circulation Research, 2008, 103, 298-306.	2.0	124
70	Torsade de Pointes. Drugs, 1994, 47, 51-65.	4.9	122
71	Novel Arrhythmogenic Mechanism Revealed by a Long-QT Syndrome Mutation in the Cardiac Na+Channel. Circulation Research, 2001, 88, 740-745.	2.0	114
72	Molecular and Electrophysiological Bases of Catecholaminergic Polymorphic Ventricular Tachycardia. Journal of Cardiovascular Electrophysiology, 2007, 18, 791-797.	0.8	113

#	Article	IF	CITATIONS
73	Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. Journal of Clinical Investigation, 2002, 110, 1201-1209.	3.9	113
74	Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. European Heart Journal, 2002, 23, 975-983.	1.0	112
75	How Really Rare Are Rare Diseases?:. Journal of Cardiovascular Electrophysiology, 2003, 14, 1120-1121.	0.8	110
76	Risk Factors for Recurrent Syncope and Subsequent Fatal or Near-Fatal Events in Children and Adolescents With Long QT Syndrome. Journal of the American College of Cardiology, 2011, 57, 941-950.	1.2	110
77	Short Communication: Flecainide Exerts an Antiarrhythmic Effect in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia by Increasing the Threshold for Triggered Activity. Circulation Research, 2011, 109, 291-295.	2.0	110
78	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace, 2022, 24, 1307-1367.	0.7	108
79	CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death and Disease, 2013, 4, e843-e843.	2.7	105
80	A Newly Characterized SCN5A Mutation Underlying Brugada Syndrome Unmasked by Hyperthermia. Journal of Cardiovascular Electrophysiology, 2003, 14, 407-411.	0.8	103
81	Calmodulin kinase II inhibition prevents arrhythmias in RyR2R4496C+/â^ mice with catecholaminergic polymorphic ventricular tachycardia. Journal of Molecular and Cellular Cardiology, 2011, 50, 214-222.	0.9	103
82	Catecholaminergic polymorphic ventricular tachycardia: A paradigm to understand mechanisms of arrhythmias associated to impaired Ca2+ regulation. Heart Rhythm, 2009, 6, 1652-1659.	0.3	102
83	Flecainide Test in Brugada Syndrome: A Reproducible but Risky Tool. PACE - Pacing and Clinical Electrophysiology, 2003, 26, 338-341.	0.5	92
84	In the RyR2 ^{R4496C} Mouse Model of CPVT, β-Adrenergic Stimulation Induces Ca Waves by Increasing SR Ca Content and Not by Decreasing the Threshold for Ca Waves. Circulation Research, 2010, 107, 1483-1489.	2.0	90
85	Novel characteristics of a misprocessed mutant HERG channel linked to hereditary long QT syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1748-H1756.	1.5	88
86	Single Delivery of an Adeno-Associated Viral Construct to Transfer the <i>CASQ2</i> Gene to Knock-In Mice Affected by Catecholaminergic Polymorphic Ventricular Tachycardia Is Able to Cure the Disease From Birth to Advanced Age. Circulation, 2014, 129, 2673-2681.	1.6	88
87	Role of Genetic Analyses in Cardiology. Circulation, 2006, 113, 1130-1135.	1.6	87
88	Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. Journal of Clinical Investigation, 2005, 115, 2033-2038.	3.9	85
89	Cardiac receptor activation and arrhythmogenesis. European Heart Journal, 1993, 14, 20-26.	1.0	83
90	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83

#	Article	IF	CITATIONS
91	Clinical Implications for Patients With Long QT Syndrome Who Experience a Cardiac Event During Infancy. Journal of the American College of Cardiology, 2009, 54, 832-837.	1.2	82
92	Homozygous Deletion in <i>KVLQT1</i> Associated With Jervell and Lange-Nielsen Syndrome. Circulation, 1999, 99, 1344-1347.	1.6	80
93	Na+-dependent SR Ca2+ overload induces arrhythmogenic events in mouse cardiomyocytes with a human CPVT mutation. Cardiovascular Research, 2010, 87, 50-59.	1.8	80
94	Electrocardiographic Prediction of Abnormal Genotype in Congenital Long QT Syndrome: Experience in 101 Related Family Members. Journal of Cardiovascular Electrophysiology, 2001, 12, 455-461.	0.8	79
95	Genetics of Cardiac Arrhythmias and Sudden Cardiac Death. Annals of the New York Academy of Sciences, 2004, 1015, 96-110.	1.8	79
96	ESC-ERC recommendations for the use of automated external defibrillators (AEDs) in Europe. European Heart Journal, 2004, 25, 437-445.	1.0	78
97	Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. British Journal of Cancer, 2015, 112, 1011-1016.	2.9	78
98	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm, 2022, 19, e1-e60.	0.3	78
99	Paradoxical Effect of Increased Diastolic Ca ²⁺ Release and Decreased Sinoatrial Node Activity in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2012, 126, 392-401.	1.6	77
100	Female Predominance and Transmission Distortion in the Long-QT Syndrome. New England Journal of Medicine, 2006, 355, 2744-2751.	13.9	76
101	Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Voltage–Dependent L-Type Calcium Channel. Circulation Research, 2011, 108, 607-618.	2.0	75
102	Trafficking Defects and Gating Abnormalities of a Novel <i>SCN5A</i> Mutation Question Gene-Specific Therapy in Long QT Syndrome Type 3. Circulation Research, 2010, 106, 1374-1383.	2.0	73
103	Early afterdepolarizations induced in vivo by reperfusion of ischemic myocardium. A possible mechanism for reperfusion arrhythmias Circulation, 1990, 81, 1911-1920.	1.6	72
104	Clinical and genetic variables associated with acute arousal and nonarousal-related cardiac events among subjects with the long QT syndrome. American Journal of Cardiology, 2000, 85, 457-461.	0.7	72
105	Clinical Implications for Affected Parents and Siblings of Probands With Long-QT Syndrome. Circulation, 2001, 104, 557-562.	1.6	71
106	Viral Gene Transfer Rescues Arrhythmogenic Phenotype and Ultrastructural Abnormalities in Adult Calsequestrin-Null Mice With Inherited Arrhythmias. Circulation Research, 2012, 110, 663-668.	2.0	71
107	Fever-related arrhythmic events in the multicenter Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm, 2018, 15, 1394-1401.	0.3	71
108	Location of Mutation in the KCNQ1 and Phenotypic Presentation of Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 2003, 14, 1149-1153.	0.8	69

#	Article	IF	CITATIONS
109	Mechanisms of <i>I</i> _{Ks} suppression in LQT1 mutants. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H3003-H3011.	1.5	68
110	Cardiac ryanodine receptor calcium release deficiency syndrome. Science Translational Medicine, 2021, 13, .	5.8	68
111	Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm, 2008, 5, 831-836.	0.3	65
112	Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism–epilepsy phenotype. Human Molecular Genetics, 2014, 23, 4875-4886.	1.4	65
113	Gender differences in patients with Brugada syndrome and arrhythmic events: Data from a survey on arrhythmic events in 678 patients. Heart Rhythm, 2018, 15, 1457-1465.	0.3	65
114	Allele-Specific Silencing of Mutant mRNA Rescues Ultrastructural and Arrhythmic Phenotype in Mice Carriers of the R4496C Mutation in the Ryanodine Receptor Gene (<i>RYR2</i>). Circulation Research, 2017, 121, 525-536.	2.0	64
115	Hydroquinidine Prevents Life-Threatening Arrhythmic Events in Patients With ShortÂQTÂSyndrome. Journal of the American College of Cardiology, 2017, 70, 3010-3015.	1.2	64
116	Assessment of a personalized and distributed patient guidance system. International Journal of Medical Informatics, 2017, 101, 108-130.	1.6	61
117	Age of First Arrhythmic Event in Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	57
118	Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: Data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm, 2018, 15, 716-724.	0.3	57
119	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
120	Therapeutic Strategies for Long-QT Syndrome. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 290-297.	2.1	56
121	Induced pluripotent stem cell–derived cardiomyocytes in studies of inherited arrhythmias. Journal of Clinical Investigation, 2013, 123, 84-91.	3.9	56
122	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
123	Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca ²⁺ release in a genetic model of arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10312-10317.	3.3	53
124	Programmed Electrical Stimulation in Brugada Syndrome: How Reproducible Are the Results?. Journal of Cardiovascular Electrophysiology, 2002, 13, 880-887.	0.8	52
125	Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death and Disease, 2016, 7, e2393-e2393.	2.7	51
126	Subclinical Abnormalities in Sarcoplasmic Reticulum Ca2+ Release Promote Eccentric Myocardial Remodeling and Pump Failure Death in Response to Pressure Overload. Journal of the American College of Cardiology, 2014, 63, 1569-1579.	1.2	47

#	Article	IF	CITATIONS
127	Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace, 2021, 23, 147-148.	0.7	47
128	Abnormal Propagation of Calcium Waves and Ultrastructural Remodeling in Recessive Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2013, 113, 142-152.	2.0	44
129	Natural History and Risk Stratification in Andersen-Tawil Syndrome Type 1. Journal of the American College of Cardiology, 2020, 75, 1772-1784.	1.2	44
130	Sympathetic activation, ventricular repolarization and Ikrblockade: Implications for the antifibrillatory efficacy of potassium channel blocking agents. Journal of the American College of Cardiology, 1995, 25, 1609-1614.	1.2	43
131	MobiGuide: a personalized and patient-centric decision-support system and its evaluation in the atrial fibrillation and gestational diabetes domains. User Modeling and User-Adapted Interaction, 2017, 27, 159-213.	2.9	43
132	Concealed arrhythmogenic syndromes: the hidden substrate of idiopathic ventricular fibrillation?. Cardiovascular Research, 2001, 50, 218-223.	1.8	42
133	Lateritic crusts and related soils in eastern Brazilian Amazonia. Geoderma, 2005, 126, 225-239.	2.3	42
134	Y1767C, a novel <i>SCN5A</i> mutation, induces a persistent Na ⁺ current and potentiates ranolazine inhibition of Na _v 1.5 channels. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H288-H299.	1.5	42
135	Molecular Biology of the Long QT Syndrome: Impact on Management. PACE - Pacing and Clinical Electrophysiology, 1997, 20, 2052-2057.	0.5	40
136	Pathogenesis and Therapy of the Idiopathic Long QT Syndrome. Annals of the New York Academy of Sciences, 1992, 644, 112-141.	1.8	36
137	Genetics of ion-channel disorders. Current Opinion in Cardiology, 2012, 27, 242-252.	0.8	36
138	Genética y arritmias: aplicaciones diagnósticas y pronósticas. Revista Espanola De Cardiologia, 2012, 65, 278-286.	0.6	35
139	Overexpression of CaMKIIδc in RyR2R4496C+/â^' Knock-In Mice Leads to Altered Intracellular Ca2+ Handling and Increased Mortality. Journal of the American College of Cardiology, 2011, 57, 469-479.	1.2	34
140	Late gadolinium enhancement by cardiovascular magnetic resonance is complementary to left ventricle ejection fraction in predicting prognosis of patients with stable coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 28.	1.6	34
141	Brugada syndrome. Orphanet Journal of Rare Diseases, 2006, 1, 35.	1.2	33
142	The usual suspects in sudden cardiac death of the young: a focus on inherited arrhythmogenic diseases. Expert Review of Cardiovascular Therapy, 2014, 12, 499-519.	0.6	33
143	Inherited arrhythmia syndromes: applying the molecular biology and genetic to the clinical management. Journal of Interventional Cardiac Electrophysiology, 2003, 9, 93-101.	0.6	32
144	International Triadin Knockout Syndrome Registry. Circulation Genomic and Precision Medicine, 2019, 12, e002419.	1.6	32

#	Article	IF	CITATIONS
145	Cardiac Sodium Channel Diseases. Clinical Chemistry and Laboratory Medicine, 2003, 41, 439-44.	1.4	31
146	Noninvasive quantification of blood potassium concentration from ECG in hemodialysis patients. Scientific Reports, 2017, 7, 42492.	1.6	31
147	CardioVAI: An automatic implementation of ACMG-AMP variant interpretation guidelines in the diagnosis of cardiovascular diseases. Human Mutation, 2018, 39, 1835-1846.	1.1	31
148	Association of Hydroxychloroquine With QTc Interval in Patients With COVID-19. Circulation, 2020, 142, 513-515.	1.6	31
149	Policy Statement. Resuscitation, 2004, 60, 245-252.	1.3	29
150	Long QT syndrome and short QT syndrome: how to make correct diagnosis and what about eligibility for sports activity. Journal of Cardiovascular Medicine, 2006, 7, 250-256.	0.6	29
151	Risk Stratification in the Long QT Syndrome. Cardiac Electrophysiology Clinics, 2012, 4, 53-60.	0.7	27
152	Should patients with an asymptomatic Brugada electrocardiogram undergo pharmacological and electrophysiological testing?. Circulation, 2005, 112, 279-92; discussion 279-92.	1.6	27
153	Outcomes of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia Treated With β-Blockers. JAMA Cardiology, 2022, 7, 504.	3.0	26
154	Intracellular Calcium Handling Dysfunction and Arrhythmogenesis. Circulation Research, 2005, 97, 1077-1079.	2.0	25
155	Gene-specific therapy for inherited arrhythmogenic diseases. , 2006, 110, 1-13.		25
156	From decision to shared-decision: Introducing patients' preferences into clinical decision analysis. Artificial Intelligence in Medicine, 2015, 65, 19-28.	3.8	25
157	Genetic defects of cardiac ion channels. The hidden substrate for torsades de pointes. Cardiovascular Drugs and Therapy, 2002, 16, 89-92.	1.3	24
158	Management of untreatable ventricular arrhythmias during pharmacologic challenges with sodium channel blockers for suspected Brugada syndrome. Europace, 2018, 20, 234-242.	0.7	24
159	European Heart Rhythm Association (<scp>EHRA</scp>)/Heart Rhythm Society (<scp>HRS</scp>)/Asia Pacific Heart Rhythm Society (<scp>APHRS</scp>)/Latin American Heart Rhythm Society (<scp>LAHRS</scp>) Expert Consensus Statement on the state of genetic testing for cardiac diseases. lournal of Arrhythmia. 2022. 38. 491-553.	0.5	24
160	In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H56-H65.	1.5	23
161	Identification of loss-of-function RyR2 mutations associated with idiopathic ventricular fibrillation and sudden death. Bioscience Reports, 2021, 41, .	1.1	23
162	Recruitment of the TATA-binding protein to the HIV-1 promoter is a limiting step for Tat transactivation. Aids, 1998, 12, 1957-1964.	1.0	22

#	Article	IF	CITATIONS
163	Significance of QT dispersion in the long QT syndrome. Progress in Cardiovascular Diseases, 2000, 42, 345-350.	1.6	22
164	Brugada syndrome. International Journal of Cardiology, 2005, 101, 173-178.	0.8	22
165	Electrophysiologic mechanisms involved in the development of torsades de pointes. Cardiovascular Drugs and Therapy, 1991, 5, 203-212.	1.3	19
166	Genetic modulators of the phenotype in the long QT syndrome: state of the art and clinical impact. Current Opinion in Genetics and Development, 2015, 33, 17-24.	1.5	19
167	Clinical utility gene card for: Catecholaminergic polymorphic ventricular tachycardia (CPVT). European Journal of Human Genetics, 2014, 22, 152-152.	1.4	18
168	R Engine Cell: integrating R into the i2b2 software infrastructure. Journal of the American Medical Informatics Association: JAMIA, 2011, 18, 314-317.	2.2	17
169	Clinical Presentation and Outcome of Brugada Syndrome Diagnosed With the New 2013 Criteria. Journal of Cardiovascular Electrophysiology, 2016, 27, 937-943.	0.8	17
170	Time-to-first appropriate shock in patients implanted prophylactically with an implantable cardioverter-defibrillator: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Europace, 2019, 21, 796-802.	0.7	16
171	Information extraction from Italian medical reports: An ontology-driven approach. International Journal of Medical Informatics, 2018, 111, 140-148.	1.6	15
172	The influence of Generalized Anxiety Disorder on Executive Functions in children with ADHD. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 349-357.	1.8	15
173	Unusual retrospective prenatal findings in a male newborn with Timothy syndrome type 1. European Journal of Medical Genetics, 2015, 58, 332-335.	0.7	14
174	J-Wave Syndromes. Cardiac Electrophysiology Clinics, 2018, 10, 355-369.	0.7	14
175	Efficacy and Limitations of Quinidine in Patients With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2019, 12, .	2.1	14
176	Genetics of Long QT, Brugada, and Other Channelopathies. , 2004, , 462-470.		13
177	Molecular Underpinning of "Good Luck― Circulation, 2006, 114, 360-362.	1.6	12
178	Supervised methods to extract clinical events from cardiology reports in Italian. Journal of Biomedical Informatics, 2019, 95, 103219.	2.5	12
179	Genetics of ventricular tachycardia. Current Opinion in Cardiology, 2002, 17, 222-228.	0.8	11
180	Computer simulation of wild-type and mutant human cardiac Na+ current. Medical and Biological Engineering and Computing, 2006, 44, 35-44.	1.6	11

#	Article	IF	CITATIONS
181	The genetics of cardiomyopathy: Genotyping and genetic counseling. Current Treatment Options in Cardiovascular Medicine, 2009, 11, 433-446.	0.4	11
182	RyRCa2+ Leak Limits Cardiac Ca2+ Window Current Overcoming the Tonic Effect of Calmodulin in Mice. PLoS ONE, 2011, 6, e20863.	1.1	11
183	Flecainide and Antiarrhythmic Effects in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Trends in Cardiovascular Medicine, 2012, 22, 35-39.	2.3	11
184	Timothy Syndrome. , 2014, , 953-957.		11
185	Multivariate Methods for Genetic Variants Selection and Risk Prediction in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2016, 3, 17.	1.1	11
186	Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Frontiers in Physiology, 2020, 11, 616819.	1.3	11
187	Cenetics and Arrhythmias: Diagnostic and Prognostic Applications. Revista Espanola De Cardiologia (English Ed), 2012, 65, 278-286.	0.4	9
188	Graphical Representation of Life Paths to Better Convey Results of Decision Models to Patients. Medical Decision Making, 2015, 35, 398-402.	1.2	9
189	Genetic risk stratification in cardiac arrhythmias. Current Opinion in Cardiology, 2018, 33, 298-303.	0.8	9
190	Catecholaminergic Polymorphic Ventricular Tachycardia and Short-coupled Torsades de Pointes. , 2004, , 633-639.		9
191	From catheters to vectors: the dawn of molecular electrophysiology. Nature Medicine, 2000, 6, 1316-1318.	15.2	8
192	Risk Stratification in the Long-QT Syndrome. New England Journal of Medicine, 2003, 349, 908-909.	13.9	8
193	When is genetic testing useful in patients suspected to have inherited cardiac arrhythmias?. Current Opinion in Cardiology, 2010, 25, 37-45.	0.8	8
194	Genetic Testing of Inherited Arrhythmias. Pediatric Cardiology, 2012, 33, 980-987.	0.6	8
195	Interplay between Clinical Guidelines and Organizational Workflow Systems. Methods of Information in Medicine, 2016, 55, 488-494.	0.7	8
196	Challenges in Molecular Diagnostics of Channelopathies in the Next-Generation Sequencing Era: Less Is More?. Frontiers in Cardiovascular Medicine, 2016, 3, 29.	1.1	8
197	Cardiac Magnetic Resonance in Stable Coronary Artery Disease: Added Prognostic Value to Conventional Risk Profiling. BioMed Research International, 2018, 2018, 1-10.	0.9	8
198	Role of calmodulin kinase in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2011, 8, 1601-1605.	0.3	7

#	Article	IF	CITATIONS
199	Supporting shared decision making within the MobiGuide project. AMIA Annual Symposium proceedings, 2013, 2013, 1175-84.	0.2	7
200	Role of CACNA1C in Brugada syndrome: Prevalence and phenotype of probands referred for genetic testing. Heart Rhythm, 2022, 19, 798-806.	0.3	7
201	Rare Variation in Drug Metabolism and Long QT Genes and the Genetic Susceptibility to Acquired Long QT Syndrome. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003391.	1.6	7
202	Torsade de pointes. Emergency Medicine Journal, 2002, 19, 485-486.	0.4	6
203	Early phase telemedicine requirements elicitation in collaboration with medical practitioners. , 2013, , \cdot		6
204	Patient-tailored workflow patterns from clinical practice guidelines recommendations. Studies in Health Technology and Informatics, 2013, 192, 392-6.	0.2	6
205	Meandering Pathway Leading From Genotyping to Personalized Management of Long-QT Syndrome. Circulation, 2012, 125, 1961-1963.	1.6	5
206	Flecainide monotherapy for catecholaminergic polymorphic ventricular tachycardia: Perspectives and limitations. Heart Rhythm, 2016, 13, 614-615.	0.3	5
207	Magnetocardiographic findings and follow-up in an asymptomatic Brugada patient. Effects of Flecainide and of exercise tests. International Congress Series, 2007, 1300, 459-462.	0.2	4
208	Unexpected Risk Profile of a Large Pediatric Population With Brugada Syndrome. Journal of the American College of Cardiology, 2019, 73, 1868-1869.	1.2	4
209	Recurrent Neural Network Architectures for Event Extraction from Italian Medical Reports. Lecture Notes in Computer Science, 2017, , 198-202.	1.0	4
210	Romano-Ward and other congenital long QT syndromes. Cardiovascular Drugs and Therapy, 2002, 16, 19-23.	1.3	3
211	Letters Regarding Article by Coronel et al, "Right Ventricular Fibrosis and Conduction Delay in a Patient With Clinical Signs of Brugada Syndrome: A Combined Electrophysiological, Genetic, Histopathologic, and Computational Study― Circulation, 2006, 113, e726; author reply 726-7.	1.6	3
212	Just another Brugada syndrome mutation?. Heart Rhythm, 2007, 4, 54-55.	0.3	3
213	The Contradictory Genetics of Atrial Fibrillation: The Growing Gap Between Knowledge and Clinical Implications. Journal of Cardiovascular Electrophysiology, 2013, 24, 570-572.	0.8	3
214	Congenital Long QT Syndrome Type 3. Cardiac Electrophysiology Clinics, 2014, 6, 705-713.	0.7	3
215	Markovian model for wild-type and mutant (Y1795C and Y1795H) human cardiac Na/sup +/ channel. , 2003, , .		2
216	Action potential changes due to Y1795H mutation in Brugada syndrome patients: a simulation study. ,		2

2003, ,

#	Article	IF	CITATIONS
217	Ex Vivo and In Vivo Administration of Fluorescent CNA35-Protein Specifically Marks Cardiac Fibrosis. Heart Rhythm, 2013, 10, 1743.	0.3	2
218	Heart, brain, and the risk of sudden death. Heart Rhythm, 2013, 10, 999-1000.	0.3	2
219	Reply. Journal of the American College of Cardiology, 2017, 69, 248-249.	1.2	2
220	Identification of a SCN5A founder mutation causing sudden death, Brugada syndrome, and conduction blocks in Southern Italy. Heart Rhythm, 2021, 18, 1698-1706.	0.3	2
221	Genetics of Cardiovascular Diseases. , 2009, , 281-293.		2
222	Transgenic models in cardiac arrhythmias: how close can we get to the bedside?. Cardiovascular Research, 2004, 61, 206-207.	1.8	1
223	Genetics for the Electrophysiologist: Take Home Messages for the Clinician. Cardiac Electrophysiology Clinics, 2010, 2, 623-634.	0.7	1
224	Ouabain is a Pharmacomimic of Mutant RyR2 Ca2+ Release Dysfunction but is not a Serum-Borne Trigger of CPVT. Biophysical Journal, 2011, 100, 412a-413a.	0.2	1
225	Bridging the Dimensions of Research on Cardiac Ryanodine Receptor Mutations. Journal of Cardiovascular Electrophysiology, 2013, 24, 219-220.	0.8	1
226	Gene Therapy to Treat Cardiac Arrhythmias. , 2018, , 531-540.		1
227	Timothy Syndrome. , 2018, , 910-916.		1
228	L-Type Calcium Channel Disease. , 2013, , 209-217.		1
229	Genetic and Molecular Basis of Arrhythmias. , 2011, , 65-86.		1
230	Is mexiletine ready for prime time in patients with Type 2 Long QT Syndrome?. European Heart Journal, 2020, 41, .	1.0	1
231	Tyrosine kinase inhibitors and QTc intervals: A class effect Journal of Clinical Oncology, 2014, 32, 2590-2590.	0.8	1
232	The Long QT Syndrome. Contemporary Cardiology, 2003, , 169-185.	0.0	1
233	2066 Genotype specific natural history in the long QT syndrome: identification of a novel risk stratification scheme. European Heart Journal, 2003, 24, 381.	1.0	1
234	Catecholaminergic Polymorphic Ventricular Tachycardia. , 2013, , 551-560.		1

#	Article	IF	CITATIONS
235	Clinical and research data integration: the i2b2-FSM experience. AMIA Summits on Translational Science Proceedings, 2013, 2013, 239-40.	0.4	1
236	Abstract 23071: Hydroquinidine Abolishes Life-threatening Arrhythmic Events in Patients With Short QT Syndrome. Circulation, 2017, 136, .	1.6	1
237	Dynamic relation between ventricular repolarization and heart rate in the long QT syndrome. Journal of the American College of Cardiology, 1996, 27, 172.	1.2	0
238	Multiple pathways for calcium handling abnormalities linking a novel CASQ2 mutation to ventricular arrhytmias and sudden death. Heart Rhythm, 2005, 2, S137-S138.	0.3	0
239	Genetics, genomics and proteomics in sudden cardiac death. , 0, , 70-89.		0
240	Impact of RyR2 Mutation Responsible for Cathecolaminergic Polymorphic Ventricular Tachycardia (CPTV) on the Short Term Interval-Force Relationship of Atrial and Ventricular Myocardium. Biophysical Journal, 2009, 96, 111a.	0.2	0
241	The heritable nature of the electrocardiogram: How far can population genetics go?. Heart Rhythm, 2009, 6, 642-643.	0.3	0
242	The Slow Pace of the Heart and the Objectives of Molecular Cardiology. Journal of Cardiovascular Electrophysiology, 2010, 21, 1373-1374.	0.8	0
243	Intracellular Calcium Handling and Inherited Arrhythmogenic Diseases. , 2011, , 387-408.		0
244	Genetic Mechanisms of Arrhythmia. , 2012, , 601-623.		0
245	Sodium Current Disorders. Cardiac Electrophysiology Clinics, 2014, 6, 825-833.	0.7	0
246	Suppressed RyR2 Function Represents a Common Cause of Idiopathic Ventricular Fibrillation and Sudden Cardiac Death. Biophysical Journal, 2014, 106, 108a-109a.	0.2	0
247	Clinical timelines development from textual medical reports in Italian. , 2017, , .		0
248	Will the Spectrum of Ion Channel Diseases Increase Further in the Near Future?. , 2002, , 212-218.		0
249	Catecholaminergic Polymorphic Ventricular Tachycardia: Another Inherited Arrhythmia?. , 2002, , 187-190.		0
250	Long QT Syndrome. , 2004, , 740-744.		0
251	Genetic Testing in the Long QT Syndrome: Development and Validation of an Efficient Approach to Genotyping in Clinical Practice. Yearbook of Cardiology, 2006, 2006, 456-457.	0.0	0
252	Genetics of Inherited Arrhythmias. , 2007, , 502-513.		0

Carlo Napolitano

#	Article	IF	CITATIONS
253	Integrative Physiology. , 2008, , 1009-1009.		0
254	Inheritable Phenotypes Associated With Altered Intracellular Calcium Regulation. , 2014, , 521-528.		0
255	Variable Phenotype of Long QT Syndrome Patients With the Same Genetic Defect. Journal of the American College of Cardiology, 1998, 31, 349A.	1.2	0
256	ECG Repolarization Parameters in LQTS Family Members With Borderline QTc Duration and Cardiac Events. Journal of the American College of Cardiology, 1998, 31, 193A.	1.2	0
257	Cardiac Events in Genotyped Long QT Syndrome Patients. Journal of the American College of Cardiology, 1998, 31, 349A.	1.2	0
258	L-type Calcium Channel Disease. , 2008, , 187-193.		0
259	Characterization of arrhythmic presentation in patients with arrhythmogenic cardiomyopathy. European Heart Journal, 2020, 41, .	1.0	0
260	Mutation site-specific risk profile in patients with Type 1 Long QT Syndrome. European Heart Journal, 2020, 41, .	1.0	0
261	Automated screening tool for Subcutaneous Implantable Defibrillator in Brugada syndrome has a high eligibility rate which is predicted by simple electrocardiographic parameters. European Heart Journal, 2020, 41, .	1.0	0
262	Role of CACNA1C variants in Brugada syndrome: clinical aspects and genetic testing strategies. European Heart Journal, 2020, 41, .	1.0	0
263	764 Prevalence and clinical implications of cardiac involvement in individuals with paucisymptomatic SARS-CoV-2 infection. European Heart Journal Supplements, 2021, 23, .	0.0	0
264	769 Differential pharmacological modulation of arrhythmic phenotype in catecholaminergic polymorphic ventricular tachycardia: not all betablockers are the same. European Heart Journal Supplements, 2021, 23, .	0.0	0