Laure Biniek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6053254/publications.pdf Version: 2024-02-01

LALIDE RINIER

#	Article	IF	CITATIONS
1	Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells. Accounts of Chemical Research, 2012, 45, 714-722.	15.6	256
2	A Versatile Method to Fabricate Highly Inâ€Plane Aligned Conducting Polymer Films with Anisotropic Charge Transport and Thermoelectric Properties: The Key Role of Alkyl Side Chain Layers on the Doping Mechanism. Advanced Functional Materials, 2017, 27, 1700173.	14.9	153
3	Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10 ⁵ S cm ^{â^`1} and Thermoelectric Power Factors of 2 mW m ^{â^`1} K ^{â^`2} . Advanced Energy Materials, 2019, 9, 1900266.	19.5	148
4	Recent advances in high mobility donor–acceptor semiconducting polymers. Journal of Materials Chemistry, 2012, 22, 14803.	6.7	138
5	Large Scale Alignment and Charge Transport Anisotropy of pBTTT Films Oriented by High Temperature Rubbing. Macromolecules, 2013, 46, 4014-4023.	4.8	135
6	Impact of the Alkyl Side Chains on the Optoelectronic Properties of a Series of Photovoltaic Low-Band-Gap Copolymers. Macromolecules, 2010, 43, 9779-9786.	4.8	122
7	Orienting Semiâ€Conducting Ï€â€Conjugated Polymers. Macromolecular Rapid Communications, 2014, 35, 9-26.	3.9	111
8	High-Temperature Rubbing: A Versatile Method to Align π-Conjugated Polymers without Alignment Substrate. Macromolecules, 2014, 47, 3871-3879.	4.8	95
9	Control of Chain Alignment and Crystallization Helps Enhance Charge Conductivities and Thermoelectric Power Factors in Sequentially Doped P3HT:F ₄ TCNQ Films. Macromolecules, 2020, 53, 2441-2453.	4.8	78
10	Precise Control of Lamellar Thickness in Highly Oriented Regioregular Poly(3â€Hexylthiophene) Thin Films Prepared by Highâ€Temperature Rubbing: Correlations with Optical Properties and Charge Transport. Advanced Functional Materials, 2016, 26, 408-420.	14.9	74
11	Effect of Alkyl Side Chain Length on Doping Kinetics, Thermopower, and Charge Transport Properties in Highly Oriented F ₄ TCNQ-Doped PBTTT Films. ACS Applied Materials & Interfaces, 2019, 11, 4942-4953.	8.0	73
12	Reversible J- to H-aggregate transformation in thin films of a perylenebisimide organogelator. Journal of Materials Chemistry C, 2015, 3, 1235-1242.	5.5	64
13	Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. Chemical Communications, 2012, 48, 7699.	4.1	63
14	BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. Chemical Communications, 2013, 49, 4465.	4.1	63
15	A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. Journal of Materials Chemistry, 2009, 19, 4946.	6.7	61
16	Perylenediimide-Based Donor–Acceptor Dyads and Triads: Impact of Molecular Architecture on Self-Assembling Properties. Journal of the American Chemical Society, 2014, 136, 5981-5992.	13.7	54
17	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. Macromolecules, 2013, 46, 727-735.	4.8	43
18	3,6â€Ðialkylthieno[3,2â€ <i>b</i>]thiophene moiety as a soluble and electron donating unit preserving the coplanarity of photovoltaic low band gap copolymers. Journal of Polymer Science Part A, 2012, 50, 1861-1868.	2.3	39

Laure Biniek

#	Article	IF	CITATIONS
19	High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex. Macromolecules, 2020, 53, 6314-6321.	4.8	39
20	Highly Oriented and Crystalline Films of a Phenyl-Substituted Polythiophene Prepared by Epitaxy: Structural Model and Influence of Molecular Weight. Macromolecules, 2016, 49, 3452-3462.	4.8	37
21	Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2â€ <i>b</i>]thiophene and 2,1,3â€Benzothiadiazole Moieties. Macromolecular Rapid Communications, 2010, 31, 651-656.	3.9	35
22	Optimization of the side-chain density to improve the charge transport and photovoltaic performances of a low band gap copolymer. Organic Electronics, 2012, 13, 114-120.	2.6	32
23	Benzotrithiophene Copolymers: Influence of Molecular Packing and Energy Levels on Charge Carrier Mobility. Macromolecules, 2014, 47, 2883-2890.	4.8	26
24	From Isotropic to Anisotropic Conductivities in P(NDI2OD-T ₂) by (Electro-)Chemical Doping Strategies. Chemistry of Materials, 2019, 31, 3542-3555.	6.7	26
25	Synthesis of two dihydropyrroloindoledioneâ€based copolymers for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1285-1291.	2.3	24
26	Dihydropyrroloindoledione-based copolymers for organic electronics. Journal of Materials Chemistry C, 2013, 1, 2711.	5.5	19
27	Tailoring the microstructure and charge transport in conjugated polymers by alkyl side-chain engineering. Journal of Materials Chemistry C, 2016, 4, 286-294.	5.5	19
28	Segregated versus Disordered Stacking in Two Low Bandgap Alternated Copolymers for Photovoltaic Applications: Impact of Polymorphism on Optical Properties. Macromolecules, 2018, 51, 4238-4249.	4.8	19
29	Thiadiazole fused indolo[2,3-a]carbazoles as new building blocks for optoelectronic applications. Tetrahedron Letters, 2011, 52, 1811-1814.	1.4	18
30	Zipper-like molecular packing of donor–acceptor conjugated co-oligomers based on perylenediimide. Journal of Materials Chemistry C, 2015, 3, 3342-3349.	5.5	18
31	High thermal conductivity states and enhanced figure of merit in aligned polymer thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 16065-16075.	10.3	17
32	Structure and Charge Transport Anisotropy of Polythieno[3,4â€ <i>b</i>]â€Thiopheneâ€ <i>co</i> â€Benzodithiophene (PTB7) Oriented by Highâ€Temperature Rubbing. Advanced Electronic Materials, 2018, 4, 1700480.	5.1	15
33	Polaron stability in semiconducting polymer neat films. Chemical Communications, 2014, 50, 14425-14428.	4.1	14
34	Impact of Competing Crystallization Processes on the Structure of All-Conjugated Donor–Acceptor Block Copolymers P3HT- <i>b</i> -PNDIT2 in Highly Oriented Thin Films. ACS Applied Polymer Materials, 2019, 1, 1660-1671.	4.4	14
35	Tuning crystallochromism in diketopyrrolopyrrole- <i>co</i> -thieno[3,2- <i>b</i>]thiophene derivatives by the architecture of their alkyl side chains. Journal of Materials Chemistry C, 2018, 6, 9140-9151.	5.5	13
36	Synthesis of [1]benzothieno[3,2-b][1]benzothiophene pendant and norbornene random co-polymers via ring opening metathesis. Journal of Materials Chemistry C, 2014, 2, 538-541.	5.5	11

Laure Biniek

#	Article	IF	CITATIONS
37	Original polymorphism in a naphthalene bisimide π-conjugated organogelator: a complex interplay between hydrogen bonding and heterocycle π-stacking. Journal of Materials Chemistry C, 2019, 7, 13120-13129.	5.5	9
38	High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads. Beilstein Journal of Nanotechnology, 2016, 7, 799-808.	2.8	8
39	Multi length scale porosity as a playground for organic thermoelectric applications. Journal of Materials Chemistry C, 2021, 9, 10173-10192.	5.5	8
40	Insulated Molecular Wires: Sheathing Semiconducting Polymers with Organic Nanotubes through Heterogeneous Nucleation. Advanced Electronic Materials, 2017, 3, 1600370.	5.1	5
41	Supramolecular organization of a H-bonded perylene bisimide organogelator determined by transmission electron microscopy, grazing incidence X-ray diffraction and polarized infra-red spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 32514-32525.	2.8	4
42	Organic Photovoltaics: More than Ever, an Interdisciplinary Field. Polymers, 2016, 8, 70.	4.5	2