

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6052601/publications.pdf Version: 2024-02-01

VE ZOU

#	Article	IF	CITATIONS
1	A two-dimensional ï€â€"d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nature Communications, 2015, 6, 7408.	12.8	609
2	Toward High Performance <i>n</i> -Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. Journal of the American Chemical Society, 2015, 137, 6979-6982.	13.7	345
3	Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. Journal of the American Chemical Society, 2017, 139, 13013-13023.	13.7	215
4	Chemical doping of organic semiconductors for thermoelectric applications. Chemical Society Reviews, 2020, 49, 7210-7228.	38.1	189
5	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie - International Edition, 2018, 57, 5708-5713.	13.8	137
6	Selenium‣ubstituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie - International Edition, 2019, 58, 18994-18999.	13.8	136
7	Deepening Insights of Charge Transfer and Photophysics in a Novel Donor–Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation. Advanced Materials, 2016, 28, 5954-5962.	21.0	105
8	Quinolineâ€Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm ² V ^{â^1} s ^{â^1} in Flexible Thin Film Devices. Advanced Materials, 2018, 30, 1704843.	21.0	97
9	Highly Conducting Neutral Coordination Polymer with Infinite Two-Dimensional Silver–Sulfur Networks. Journal of the American Chemical Society, 2018, 140, 15153-15156.	13.7	97
10	A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations. Advanced Materials, 2017, 29, 1701772.	21.0	95
11	Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport. Journal of the American Chemical Society, 2017, 139, 2734-2740.	13.7	79
12	Cholesteric Aggregation at the Quinoidal-to-Diradical Border Enabled Stable n-Doped Conductor. CheM, 2019, 5, 964-976.	11.7	79
13	Efficient Solution-Processed n-Type Small-Molecule Thermoelectric Materials Achieved by Precisely Regulating Energy Level of Organic Dopants. ACS Applied Materials & Interfaces, 2017, 9, 28795-28801.	8.0	78
14	Bismuth Interfacial Doping of Organic Small Molecules for High Performance nâ€ŧype Thermoelectric Materials. Angewandte Chemie - International Edition, 2016, 55, 10672-10675.	13.8	77
15	Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9, 2339.	12.8	76
16	Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1705286.	21.0	70
17	Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. Journal of Materials Chemistry C, 2014, 2, 1264.	5.5	60
18	Twoâ€Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angewandte Chemie - International Edition, 2020, 59, 9403-9407.	13.8	56

Ye Zou

#	Article	IF	CITATIONS
19	Molecular antenna tailored organic thin-film transistors for sensing application. Materials Horizons, 2018, 5, 240-247.	12.2	48
20	Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nature Communications, 2022, 13, 1411.	12.8	44
21	Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. Nature Communications, 2015, 6, 7478.	12.8	43
22	Synthetic Route to a Triphenylenehexaselenol-Based Metal Organic Framework with Semi-conductive and Glassy Magnetic Properties. IScience, 2020, 23, 100812.	4.1	39
23	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie, 2018, 130, 5810-5815.	2.0	38
24	Reliable Spin Valves of Conjugated Polymer Based on Mechanically Transferrable Top Electrodes. ACS Nano, 2018, 12, 12657-12664.	14.6	34
25	Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosensors and Bioelectronics, 2020, 164, 112251.	10.1	33
26	The Role of Weak Molecular Dopants in Enhancing the Performance of Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2019, 5, 1800547.	5.1	32
27	Highâ€Performance UVâ€Sensitive Organic Phototransistors Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiophene Dimers Linked with Unsaturated Bonds. Advanced Electronic Materials, 2015, 1, 1500071.	5.1	31
28	Substrate effect on the interfacial electronic structure of thermally-evaporated CH3NH3PbI3 perovskite layer. Organic Electronics, 2017, 41, 307-314.	2.6	31
29	Enhanced Thermoelectric Performance of nâ€Type Organic Semiconductor via Electric Field Modulated Photoâ€Thermoelectric Effect. Advanced Materials, 2020, 32, e2000273.	21.0	31
30	A Novel Solutionâ€Processable nâ€Dopant Based on 1,4â€Dihydropyridine Motif for High Electrical Conductivity of Organic Semiconductors. Advanced Electronic Materials, 2017, 3, 1700164.	5.1	30
31	Nanorods of a novel highly conductive 2D metal–organic framework based on perthiolated coronene for thermoelectric conversion. Journal of Materials Chemistry C, 2020, 8, 8199-8205.	5.5	30
32	Electronic structure engineering in organic thermoelectric materials. Journal of Energy Chemistry, 2021, 62, 204-219.	12.9	30
33	Insights into the Control of Optoelectronic Properties in Mixedâ€Stacking Chargeâ€Transfer Complexes. Chemistry - A European Journal, 2020, 26, 3578-3585.	3.3	29
34	Pyridyl-substituted anthracene derivatives with solid-state emission and charge transport properties. Journal of Materials Chemistry C, 2016, 4, 3621-3627.	5.5	28
35	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu _{<i>x</i>} C ₆ S ₆ (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie - International Edition, 2020, 59, 22602-22609.	13.8	26
36	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing I€-conjugated heterocyclic bridging moieties. Journal of Materials Chemistry C, 2016, 4, 7230-7240.	5.5	25

Ye Zou

#	Article	IF	CITATIONS
37	Correlation between Seebeck coefficient and transport energy level in poly(3-hexylthiophene). Organic Electronics, 2018, 56, 125-128.	2.6	23
38	Subâ€10 nm Ag Nanoparticles/Graphene Oxide: Controllable Synthesis, Sizeâ€Dependent and Extremely Ultrahigh Catalytic Activity. Small, 2019, 15, e1901701.	10.0	22
39	Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie, 2019, 131, 19170-19175.	2.0	18
40	Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Singleâ€Crystalline Electrochemical Metallization Memories. Advanced Materials, 2016, 28, 7094-7100.	21.0	17
41	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	13.7	17
42	Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure. Journal of Chemical Physics, 2016, 144, 084706.	3.0	16
43	PPN (poly-peri-naphthalene) film as a narrow-bandgap organic thermoelectric material. Journal of Materials Chemistry A, 2017, 5, 9891-9896.	10.3	14
44	Optimization of the thermoelectric performance of layer-by-layer structured copper-phthalocyanine (CuPc) thin films doped with hexacyano-trimethylene-cyclopropane (CN6-CP). RSC Advances, 2019, 9, 31840-31845.	3.6	13
45	Doped thieno[3,4- <i>b</i>]thiophene-based copolymers for p-type organic thermoelectric materials. Journal of Materials Chemistry C, 2021, 9, 4158-4163.	5.5	13
46	Ambipolar charge transport in an organic/inorganic van der Waals p–n heterojunction. Journal of Materials Chemistry C, 2018, 6, 12976-12980.	5.5	12
47	Highly Efficient Charge Transport in a Quasiâ€Monolayer Semiconductor on Pure Polymer Dielectric. Advanced Functional Materials, 2020, 30, 1907153.	14.9	12
48	Backbone Structure Effect on the Thermoelectric Properties of IDTâ€Based pâ€Type Conjugated Polymers. Macromolecular Rapid Communications, 2020, 41, 1900322.	3.9	12
49	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15, 2667-2673.	10.4	12
50	Bismuth Interfacial Doping of Organic Small Molecules for High Performance nâ€ŧype Thermoelectric Materials. Angewandte Chemie, 2016, 128, 10830-10833.	2.0	10
51	Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Research, 2021, 14, 304-310.	10.4	10
52	Facile synthesis, precise species control and chemical transformation of highly conducting organic metal chalcogenides Cu _{<i>x</i>} BHT (BHT = benzenehexathiol; <i>x</i> = 3, 4, and 5.5). Journal of Materials Chemistry C, 2022, 10, 2711-2717.	5.5	10
53	An Oligonucleotideâ€Distortionâ€Responsive Organic Transistor for Platinumâ€Drugâ€Induced DNAâ€Damage Detection. Advanced Materials, 2021, 33, e2100489.	21.0	10
54	Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2016, 8, 7919-7927.	8.0	9

Ye Zou

#	Article	IF	CITATIONS
55	Photosensors: A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations (Adv. Mater. 32/2017). Advanced Materials, 2017, 29, .	21.0	8
56	Functionalization of Lowâ€k Polyimide Gate Dielectrics with Selfâ€Assembly Monolayer Toward Highâ€Performance Organic Fieldâ€Effect Transistors and Circuits. Advanced Materials Interfaces, 2021, 8, 2100217.	3.7	8
57	Fluorinated Dielectricsâ€Modulated Organic Phototransistors and Flexible Image Sensors. Advanced Optical Materials, 2022, 10, .	7.3	7
58	Deposition rate related DPA OFET threshold voltage shift and hysteresis variation. Journal of Materials Chemistry C, 2018, 6, 12498-12502.	5.5	6
59	Cu–Thienoquinone Charge-Transfer Complex: Synthesis, Characterization, and Application in Organic Transistors. ACS Applied Materials & Interfaces, 2018, 10, 26451-26455.	8.0	6
60	Surface charge transfer doping of graphene using a strong molecular dopant CN6-CP. Chinese Chemical Letters, 2023, 34, 107239.	9.0	6
61	Enhanced thermoelectric performance of pentacene via surface charge transfer doping in a sandwich structure. Applied Physics Letters, 2021, 118, 253302.	3.3	5
62	Hierarchical Heterojunction Enhanced Photodoping of Polymeric Semiconductor for Photodetection and Photothermoelectric Applications. , 2022, 4, 815-822.		5
63	Engineering the Doping Efficiency in Pentacene Thin Films for High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2020, 12, 29540-29548.	8.0	4
64	Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating. Science China Materials, 2020, 63, 1046-1053.	6.3	3
65	Highly Conductive Organic–Inorganic Hybrid Silver Sulfide with 3D Silver–Sulfur Networks Constructed from Benzenehexathiol: Structural Topology Regulation via Ligand Oxidation. Inorganic Chemistry, 2022, 61, 5060-5066.	4.0	3
66	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu x C 6 S 6 (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie, 2020, 132, 22791-22798.	2.0	2
67	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	5.5	2
68	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	5.1	2
69	Highly Crystalline Agâ€based Coordination Polymers for Efficient Photocatalytic Oxidation of Sulfides. Chemistry - an Asian Journal, 2022, , e202200031.	3.3	2
70	Titelbild: Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 18893-18893.	2.0	1
71	Polymer Fieldâ€Effect Transistors: Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldâ€Effect Transistors (Adv. Mater.) Tj ETQq1 1 C).7 28140 14	rgBJT /Overlo
72	Two highly crystalline coordination polymers with two-dimensional PbS networks for photocatalytic synthesis of imines. Catalysis Science and Technology, 0, , .	4.1	0