
Oscar Marin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605215/publications.pdf Version: 2024-02-01

OSCAD MADIN

#	Article	IF	CITATIONS
1	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	4.9	1,314
2	Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience, 2012, 13, 107-120.	4.9	978
3	A long, remarkable journey: Tangential migration in the telencephalon. Nature Reviews Neuroscience, 2001, 2, 780-790.	4.9	956
4	CELLMIGRATION IN THEFOREBRAIN. Annual Review of Neuroscience, 2003, 26, 441-483.	5.0	873
5	New Neurons Follow the Flow of Cerebrospinal Fluid in the Adult Brain. Science, 2006, 311, 629-632.	6.0	708
6	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	4.9	707
7	Origin and Molecular Specification of Striatal Interneurons. Journal of Neuroscience, 2000, 20, 6063-6076.	1.7	556
8	Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes. Journal of Neuroscience, 2007, 27, 9682-9695.	1.7	504
9	Development and Functional Diversification of Cortical Interneurons. Neuron, 2018, 100, 294-313.	3.8	470
10	Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature, 2010, 464, 1376-1380.	13.7	423
11	Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016, 15, 485-515.	21.5	410
12	Slit Proteins Prevent Midline Crossing and Determine the Dorsoventral Position of Major Axonal Pathways in the Mammalian Forebrain. Neuron, 2002, 33, 233-248.	3.8	395
13	Sorting of Striatal and Cortical Interneurons Regulated by Semaphorin-Neuropilin Interactions. Science, 2001, 293, 872-875.	6.0	393
14	Preventive strategies for mental health. Lancet Psychiatry, the, 2018, 5, 591-604.	3.7	390
15	Short- and Long-Range Attraction of Cortical GABAergic Interneurons by Neuregulin-1. Neuron, 2004, 44, 251-261.	3.8	383
16	Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex. Journal of Neuroscience, 2007, 27, 10935-10946.	1.7	356
17	Guiding Neuronal Cell Migrations. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001834-a001834.	2.3	355
18	Tangential Neuronal Migration Controls Axon Guidance: A Role for Neuregulin-1 in Thalamocortical Axon Navigation. Cell, 2006, 125, 127-142.	13.5	338

#	Article	IF	CITATIONS
19	Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons. Neuron, 2000, 28, 727-740.	3.8	321
20	Developmental timing and critical windows for the treatment of psychiatric disorders. Nature Medicine, 2016, 22, 1229-1238.	15.2	277
21	Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness. Neuron, 2011, 69, 77-90.	3.8	260
22	Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes. Neuron, 2013, 79, 1152-1168.	3.8	254
23	Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nature Neuroscience, 2006, 9, 1284-1293.	7.1	253
24	The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons. Journal of Neuroscience, 2009, 29, 9380-9389.	1.7	239
25	Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors. Neuron, 2008, 59, 733-745.	3.8	236
26	Neuronal migration mechanisms in development and disease. Current Opinion in Neurobiology, 2010, 20, 68-78.	2.0	219
27	Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends in Neurosciences, 1998, 21, 487-494.	4.2	209
28	Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 2018, 557, 668-673.	13.7	209
29	Chemokine Signaling Controls Intracortical Migration and Final Distribution of GABAergic Interneurons. Journal of Neuroscience, 2008, 28, 1613-1624.	1.7	208
30	Early emergence of cortical interneuron diversity in the mouse embryo. Science, 2018, 360, 81-85.	6.0	205
31	The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9005-9010.	3.3	204
32	Robo1 and Robo2 Cooperate to Control the Guidance of Major Axonal Tracts in the Mammalian Forebrain. Journal of Neuroscience, 2007, 27, 3395-3407.	1.7	203
33	Evolution of the basal ganglia: new perspectives through a comparative approach. Journal of Anatomy, 2000, 196, 501-517.	0.9	200
34	New Neurons Clear the Path of Astrocytic Processes for Their Rapid Migration in the Adult Brain. Neuron, 2010, 67, 213-223.	3.8	194
35	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
36	Generation of interneuron diversity in the mouse cerebral cortex. European Journal of Neuroscience, 2010, 31, 2136-2141.	1.2	165

#	Article	IF	CITATIONS
37	Cellular and molecular mechanisms controlling the migration of neocortical interneurons. European Journal of Neuroscience, 2013, 38, 2019-2029.	1.2	164
38	Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults. Neuron, 2013, 79, 849-864.	3.8	160
39	A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area. Journal of Neuroscience, 2011, 31, 16570-16580.	1.7	156
40	Basal ganglia organization in amphibians: Chemoarchitecture. Journal of Comparative Neurology, 1998, 392, 285-312.	0.9	143
41	Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 2015, 349, 1216-1220.	6.0	143
42	Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana) Tj ETQq0 0 0 rgBT /Ove 1997, 382, 499-534.	rlock 10 Tf 0.9	f 50 547 Td (p 140
43	Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. Journal of Comparative Neurology, 2001, 431, 105-126.	0.9	139
44	Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development (Cambridge), 2003, 130, 1889-1901.	1.2	135
45	Slit/Robo Signaling Modulates the Proliferation of Central Nervous System Progenitors. Neuron, 2012, 76, 338-352.	3.8	130
46	Layer Acquisition by Cortical GABAergic Interneurons Is Independent of Reelin Signaling. Journal of Neuroscience, 2006, 26, 6924-6934.	1.7	123
47	Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development (Cambridge), 2009, 136, 41-50.	1.2	120
48	Origin and Molecular Specification of Globus Pallidus Neurons. Journal of Neuroscience, 2010, 30, 2824-2834.	1.7	117
49	Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. , 1997, 378, 16-49.		114
50	Lineage-specific laminar organization of cortical GABAergic interneurons. Nature Neuroscience, 2013, 16, 1199-1210.	7.1	113
51	Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 380, 23-50.	0.9	99
52	Contact Repulsion Controls the Dispersion and Final Distribution of Cajal-Retzius Cells. Neuron, 2013, 77, 457-471.	3.8	99
53	Developmental Mechanisms Underlying the Generation of Cortical Interneuron Diversity. Neuron, 2005, 46, 377-381.	3.8	96
54	Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. Journal of Comparative Neurology, 2000, 428, 450-474.	0.9	92

#	Article	IF	CITATIONS
55	Developmental Cell Death in the Cerebral Cortex. Annual Review of Cell and Developmental Biology, 2019, 35, 523-542.	4.0	90
56	Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog,Rana perezi. Journal of Comparative Neurology, 1996, 367, 54-69.	0.9	88
57	Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 50-69.	0.9	84
58	Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: An immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology, 1994, 346, 63-79.	0.9	83
59	Requirement of the orphan nuclear receptor SF-1 in terminal differentiation of ventromedial hypothalamic neurons. Molecular and Cellular Neurosciences, 2003, 22, 441-453.	1.0	81
60	Neuregulin signaling, cortical circuitry development and schizophrenia. Current Opinion in Genetics and Development, 2011, 21, 262-270.	1.5	80
61	Regional expression of the homeobox gene NKX2-1 defines pallidal and interneuronal populations in the basal ganglia of amphibians. Neuroscience, 2002, 114, 567-575.	1.1	79
62	A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. ELife, 2019, 8, .	2.8	79
63	Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Current Opinion in Neurobiology, 2018, 48, 174-182.	2.0	78
64	Neurons in motion: same principles for different shapes?. Trends in Neurosciences, 2006, 29, 655-661.	4.2	77
65	Basal ganglia organization in amphibians: evidence for a common pattern in tetrapods. Progress in Neurobiology, 1998, 55, 363-397.	2.8	76
66	Mouse and human share conserved transcriptional programs for interneuron development. Science, 2021, 374, eabj6641.	6.0	75
67	Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nature Neuroscience, 2018, 21, 920-931.	7.1	72
68	Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development (Cambridge), 2013, 140, 4554-4564.	1.2	71
69	Abnormal wiring of CCK+ basket cells disrupts spatial information coding. Nature Neuroscience, 2017, 20, 784-792.	7.1	69
70	Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. Journal of Comparative Neurology, 2001, 434, 186-208.	0.9	67
71	Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Current Opinion in Neurobiology, 2014, 26, 132-141.	2.0	65
72	Loss of <i>Cntnap2</i> Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cerebral Cortex, 2019, 29, 586-597.	1.6	65

#	Article	IF	CITATIONS
73	Abnormal laminar position and dendrite development of interneurons in the reeler forebrain. Brain Research, 2007, 1140, 75-83.	1.1	58
74	Focal Adhesion Kinase Modulates Radial Glia-Dependent Neuronal Migration through Connexin-26. Journal of Neuroscience, 2011, 31, 11678-11691.	1.7	55
75	Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons. Cell Reports, 2017, 18, 1157-1170.	2.9	55
76	Do amphibians have a true locus coeruleus?. NeuroReport, 1996, 7, 1447.	0.6	53
77	Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development (Cambridge), 2002, 129, 761-73.	1.2	51
78	Origin of tectal cholinergic projections in amphibians: A combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines. Visual Neuroscience, 1999, 16, 271-283.	0.5	47
79	Transcriptional Control of Neuronal Migration in the Developing Mouse Brain. Cerebral Cortex, 2009, 19, i107-i113.	1.6	44
80	Anatomical Substrate of Amphibian Basal Ganglia Involvement in Visuomotor Behaviour. European Journal of Neuroscience, 1997, 9, 2100-2109.	1.2	43
81	Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog,Rana perezi. Journal of Comparative Neurology, 2000, 419, 451-470.	0.9	43
82	Cholinergic and GABAergic neuronal elements in the pineal organ of lampreys, and tract-tracing observations of differential connections of pinealofugal neurons. Cell and Tissue Research, 1999, 295, 215-223.	1.5	42
83	Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development. Experimental Neurology, 2012, 235, 610-620.	2.0	42
84	Molecular Mechanisms Controlling the Migration of Striatal Interneurons. Journal of Neuroscience, 2015, 35, 8718-8729.	1.7	39
85	Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs. , 1997, 383, 349-369.		38
86	Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. Journal of Comparative Neurology, 2001, 434, 209-232.	0.9	38
87	Organization of cholinergic systems in the brain of different fish groups: a comparative analysis. Brain Research Bulletin, 2002, 57, 331-334.	1.4	36
88	Ikarosâ€1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. Journal of Comparative Neurology, 2010, 518, 329-351.	0.9	36
89	Differential Expression of Eph Receptors and Ephrins Correlates with the Formation of Topographic Projections in Primary and Secondary Visual Circuits of the Embryonic Chick Forebrain. Developmental Biology, 2001, 234, 289-303.	0.9	34
90	Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian,Dermophis mexicanus(Amphibia: Gymnophiona). Journal of Comparative Neurology, 2002, 448, 249-267.	0.9	34

#	Article	IF	CITATIONS
91	Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation. Nature Communications, 2015, 6, 6887.	5.8	32
92	Development of catecholamine systems in the central nervous system of the newtPleurodeles waltliias revealed by tyrosine hydroxylase immunohistochemistry. Journal of Comparative Neurology, 1995, 360, 33-48.	0.9	28
93	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
94	Evidence for a mesolimbic pathway in anuran amphibians: a combined tract-tracing/immunohistochemical study. Neuroscience Letters, 1995, 190, 183-186.	1.0	27
95	Extensive branching of radiallyâ€migrating neurons in the mammalian cerebral cortex. Journal of Comparative Neurology, 2019, 527, 1558-1576.	0.9	27
96	Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis. Journal of Chemical Neuroanatomy, 1995, 9, 27-40.	1.0	24
97	Tuning neural circuits by turning the interneuron knob. Current Opinion in Neurobiology, 2017, 42, 144-151.	2.0	24
98	Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits. ELife, 2020, 9, .	2.8	23
99	Patterning, Regionalization, and Cell Differentiation in the Forebrain. , 2002, , 75-106.		21
100	Distribution and origin of the catecholaminergic innervation in the amphibian mesencephalic tectum. Visual Neuroscience, 2002, 19, 321-333.	0.5	20
101	Localization of adrenomedullin-like immunoreactivity in the hypothalamo-hypophysial system of amphibians. Neuroscience Letters, 1998, 242, 13-16.	1.0	17
102	Human Cortical Interneurons Take Their Time. Cell Stem Cell, 2013, 12, 497-499.	5.2	16
103	Thalamocortical Topography Reloaded. Neuron, 2003, 39, 388-391.	3.8	15
104	Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Journal of Cell Science, 2013, 126, e1-e1.	1.2	14
105	Afferent connections of the nucleus accumbens of the snake, Elaphe guttata, studied by means of in vitro and in vivo tracing techniques in combination with TH immunohistochemistry. Neuroscience Letters, 1997, 225, 101-104.	1.0	13
106	The neuron family tree remodelled. Nature, 2012, 490, 185-186.	13.7	13
107	Orchestrated freedom: new insights into cortical neurogenesis. Current Opinion in Neurobiology, 2021, 66, 48-56.	2.0	13
108	Cholinergic and Catecholaminergic Neurons Relay Striatal Information to the Optic Tectum in Amphibians. European Journal of Morphology, 1999, 37, 155-159.	1.4	13

#	Article	IF	CITATIONS
109	Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Research Bulletin, 2002, 57, 325-330.	1.4	12
110	Single-Nuclei RNA Sequencing of 5 Regions of the Human Prenatal Brain Implicates Developing Neuron Populations in Genetic Risk for Schizophrenia. Biological Psychiatry, 2023, 93, 157-166.	0.7	11
111	Cajal-Retzius cells. Current Biology, 2012, 22, R179.	1.8	10
112	Evidences for Shared Features in the Organization of the Basal Ganglia in Tetrapods: Studies in Amphibians. European Journal of Morphology, 1999, 37, 151-154.	1.4	10
113	CXCL12-Mediated Murine Neural Progenitor Cell Movement Requires PI3KÎ ² Activation. Molecular Neurobiology, 2013, 48, 217-231.	1.9	8
114	Serotonergic regulation of bipolar cell survival in the developing cerebral cortex. Cell Reports, 2022, 40, 111037.	2.9	7
115	Editorial overview: Development and regeneration: Nervous system development and regeneration. Current Opinion in Neurobiology, 2014, 27, iv-vi.	2.0	6
116	Input-specific control of interneuron numbers in nascent striatal networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118430119.	3.3	6
117	A New Beginning for a Broken Mind: Balancing Neuregulin 1 Reverses Synaptic Dysfunction. Neuron, 2013, 78, 577-579.	3.8	5
118	Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog, Rana perezi. Journal of Comparative Neurology, 2000, 419, 451.	0.9	5
119	Tangential Migration in the Telencephalon. , 2015, , 45-58.		4
120	More than one way to induce a neuron. Nature, 2018, 557, 316-317.	13.7	3
121	Choline Acetyltransferase Immunoreactivity in the Hypothalamoneurohypophysial System of the Lamprey. European Journal of Morphology, 1999, 37, 103-106.	1.4	3
122	14-3-3. , 2008, , 1-1.		2
123	Function follows form: understanding brain function from a genetic perspective. Current Opinion in Genetics and Development, 2011, 21, 237-239.	1.5	2
124	Basal ganglia organization in amphibians: Chemoarchitecture. , 1998, 392, 285.		2
125	Sculpting Circuits: CRH Interneurons Modulate Neuronal Integration. Developmental Cell, 2014, 30, 639-640.	3.1	1
126	A postnatal function for Nkx2â€1 in basal forebrain integrity (Commentary on Magno <i>etÂal.</i>). European Journal of Neuroscience, 2011, 34, 1766-1766.	1.2	0

#	Article	IF	CITATIONS
127	AgustÃn González, an Inspirational Leader in Spanish Comparative Neuroanatomy. Brain, Behavior and Evolution, 2022, 96, 174-180.	0.9	Ο