Bin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6052059/publications.pdf

Version: 2024-02-01

66911 53794 7,539 152 45 78 citations h-index g-index papers 164 164 164 10145 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Medicine, 2007, 13, 1299-1307.	30.7	835
2	FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4571-4576.	7.1	370
3	The Ubiquitin Ligase Stub1 Negatively Modulates Regulatory T Cell Suppressive Activity by Promoting Degradation of the Transcription Factor Foxp3. Immunity, 2013, 39, 272-285.	14.3	260
4	m6A mRNA methylation sustains Treg suppressive functions. Cell Research, 2018, 28, 253-256.	12.0	243
5	FOXP3+ regulatory T cells and their functional regulation. Cellular and Molecular Immunology, 2015, 12, 558-565.	10.5	231
6	Critical role of <i>all</i> - <i>trans</i> retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3432-40.	7.1	206
7	TGF- \hat{l}^2 and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14023-14027.	7.1	145
8	MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nature Communications, 2015, 6, 7096.	12.8	133
9	FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. International Immunology, 2007, 19, 825-835.	4.0	124
10	FOXP3+ Treg Cells and Gender Bias in Autoimmune Diseases. Frontiers in Immunology, 2015, 6, 493.	4.8	117
11	Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Experimental and Molecular Pathology, 2009, 87, 99-104.	2.1	115
12	FOXP3 and $ROR\hat{I}^3t$: Transcriptional regulation of Treg and Th17. International Immunopharmacology, 2011, 11, 536-542.	3.8	115
13	Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer. Molecular Cancer, 2015, 14, 191.	19.2	115
14	Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3246-54.	7.1	108
15	All-Trans Retinoic Acid Promotes TGF-Î ² -Induced Tregs via Histone Modification but Not DNA Demethylation on Foxp3 Gene Locus. PLoS ONE, 2011, 6, e24590.	2.5	102
16	PIM1 Kinase Phosphorylates the Human Transcription Factor FOXP3 at Serine 422 to Negatively Regulate Its Activity under Inflammation. Journal of Biological Chemistry, 2014, 289, 26872-26881.	3.4	89
17	SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nature Communications, 2018, 9, 3157.	12.8	87
18	Structural and Biological Features of FOXP3 Dimerization Relevant to Regulatory T Cell Function. Cell Reports, 2012, 1, 665-675.	6.4	83

#	Article	IF	CITATIONS
19	Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. Journal of Experimental Medicine, 2017, 214, 1471-1491.	8.5	81
20	TGF-β–Induced Regulatory T Cells Directly Suppress B Cell Responses through a Noncytotoxic Mechanism. Journal of Immunology, 2016, 196, 3631-3641.	0.8	78
21	FOXP3 ensembles in T-cell regulation. Immunological Reviews, 2006, 212, 99-113.	6.0	77
22	Human fibrocytes coexpress thyroglobulin and thyrotropin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7427-7432.	7.1	77
23	Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Current Opinion in Immunology, 2010, 22, 583-591.	5.5	76
24	p38 inhibition provides anti–DNA virus immunity by regulation of USP21 phosphorylation and STING activation. Journal of Experimental Medicine, 2017, 214, 991-1010.	8.5	76
25	Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation. Journal of Biological Chemistry, 2015, 290, 20211-20220.	3.4	74
26	The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nature Communications, 2016, 7, 13594.	12.8	72
27	Identification of the E3 Deubiquitinase Ubiquitin-specific Peptidase 21 (USP21) as a Positive Regulator of the Transcription Factor GATA3. Journal of Biological Chemistry, 2013, 288, 9373-9382.	3.4	70
28	IL-17A Exacerbates Fibrosis by Promoting the Proinflammatory and Profibrotic Function of Orbital Fibroblasts in TAO. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2955-2965.	3.6	70
29	Serum uric acid and mortality in chronic kidney disease: A systematic review and meta-analysis. Metabolism: Clinical and Experimental, 2016, 65, 1326-1341.	3.4	69
30	USP21 prevents the generation of T-helper-1-like Treg cells. Nature Communications, 2016, 7, 13559.	12.8	67
31	Th17 cells in autoimmune diseases. Frontiers of Medicine, 2015, 9, 10-19.	3.4	63
32	<scp>TRAF</scp> 6 directs <scp>FOXP</scp> 3 localization and facilitates regulatory Tâ€cell function through K63â€linked ubiquitination. EMBO Journal, 2019, 38, .	7.8	62
33	Targeting ANXA1 abrogates Treg-mediated immune suppression in triple-negative breast cancer. , 2020, 8, e000169.		62
34	Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. International Immunopharmacology, 2015, 28, 859-865.	3.8	61
35	Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival. Molecular Cancer, 2014, 13, 153.	19.2	59
36	FOXP3+ Tregs: heterogeneous phenotypes and conflicting impacts on survival outcomes in patients with colorectal cancer. Immunologic Research, 2015, 61, 338-347.	2.9	57

#	Article	IF	CITATIONS
37	Cutting Edge: Ubiquitin-Specific Protease 4 Promotes Th17 Cell Function under Inflammation by Deubiquitinating and Stabilizing RORγt. Journal of Immunology, 2015, 194, 4094-4097.	0.8	57
38	PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185erbB2/neu Tumor Immunotherapy. Frontiers in Immunology, 2019, 10, 174.	4.8	56
39	Peli 1 negatively regulates noncanonical NF- \hat{l}° B signaling to restrain systemic lupus erythematosus. Nature Communications, 2018, 9, 1136.	12.8	55
40	The E3 Deubiquitinase USP17 Is a Positive Regulator of Retinoic Acid-related Orphan Nuclear Receptor \hat{I}^3 t (ROR \hat{I}^3 t) in Th17 Cells. Journal of Biological Chemistry, 2014, 289, 25546-25555.	3.4	54
41	Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate Morphogenesis of the Virion Assembly Compartment. Journal of Virology, 2015, 89, 3049-3061.	3.4	53
42	Poly(ADP-ribosyl)ation of FOXP3 Protein Mediated by PARP-1 Protein Regulates the Function of Regulatory T Cells. Journal of Biological Chemistry, 2015, 290, 28675-28682.	3.4	52
43	Special regulatory T-cell review: FOXP3 biochemistry in regulatory T cells – how diverse signals regulate suppression. Immunology, 2008, 123, 17-19.	4.4	50
44	Musashi-2 promotes migration and invasion in bladder cancer via activation of the JAK2/STAT3 pathway. Laboratory Investigation, 2016, 96, 950-958.	3.7	50
45	Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS ONE, 2015, 10, e0145023.	2.5	49
46	FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunologic Research, 2008, 42, 19-28.	2.9	48
47	The Functional Stability of FOXP3 and ROR \hat{I}^3 t in Treg and Th17 and Their Therapeutic Applications. Advances in Protein Chemistry and Structural Biology, 2017, 107, 155-189.	2.3	48
48	Regulation of Orbital Fibrosis and Adipogenesis by Pathogenic Th17 Cells in Graves Orbitopathy. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4273-4283.	3.6	48
49	Reciprocal regulation of ROR \hat{I} ³ t acetylation and function by p300 and HDAC1. Scientific Reports, 2015, 5, 16355.	3.3	47
50	Tissue resident regulatory T cells: novel therapeutic targets for human disease. Cellular and Molecular Immunology, 2015, 12, 543-552.	10.5	47
51	Suppression by human FOXP3 ⁺ regulatory T cells requires FOXP3-TIP60 interactions. Science Immunology, 2017, 2, .	11.9	47
52	The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 15.	8.6	46
53	Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5465-5470.	7.1	45
54	Insights Into Local Orbital Immunity: Evidence for the Involvement of the Th17 Cell Pathway in Thyroid-Associated Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1697-1711.	3.6	45

#	Article	IF	CITATIONS
55	Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biology, 2019, 17, e3000270.	5.6	44
56	MondoA–Thioredoxin-Interacting Protein Axis Maintains Regulatory T-Cell Identity and Function in Colorectal Cancer Microenvironment. Gastroenterology, 2021, 161, 575-591.e16.	1.3	44
57	FOXP3 Actively Represses Transcription by Recruiting the HAT/HDAC Complex. Cell Cycle, 2007, 6, 1431-1435.	2.6	42
58	Insulin signaling establishes a developmental trajectory of adipose regulatory T cells. Nature Immunology, 2021, 22, 1175-1185.	14.5	42
59	Negative Regulation of Interferon-induced Transmembrane Protein 3 by SET7-mediated Lysine Monomethylation. Journal of Biological Chemistry, 2013, 288, 35093-35103.	3.4	41
60	The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Reports, 2020, 21, e50308.	4.5	41
61	Immune regulation by histone deacetylases: a focus on the alteration of FOXP3 activity. Immunology and Cell Biology, 2012, 90, 95-100.	2.3	40
62	Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nature Communications, 2017, 8, 1762.	12.8	40
63	The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. International Journal of Molecular Sciences, 2015, 16, 27956-27966.	4.1	38
64	TRAF5-mediated Lys-63-linked Polyubiquitination Plays an Essential Role in Positive Regulation of RORγt in Promoting IL-17A Expression. Journal of Biological Chemistry, 2015, 290, 29086-29094.	3.4	37
65	Keratin 80 promotes migration and invasion of colorectal carcinoma by interacting with PRKDC via activating the AKT pathway. Cell Death and Disease, 2018, 9, 1009.	6.3	37
66	Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. European Journal of Immunology, 2021, 51, 2137-2150.	2.9	37
67	Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Current Opinion in Immunology, 2007, 19, 583-588.	5. 5	36
68	Histone deacetylase inhibitors and transplantation. Current Opinion in Immunology, 2007, 19, 589-595.	5.5	36
69	MLL5 suppresses antiviral innate immune response by facilitating STUB1-mediated RIG-I degradation. Nature Communications, 2018, 9, 1243.	12.8	36
70	Ring finger protein 31–mediated atypical ubiquitination stabilizes forkhead box P3 and thereby stimulates regulatory T-cell function. Journal of Biological Chemistry, 2018, 293, 20099-20111.	3.4	36
71	The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma. Biochemical Pharmacology, 2016, 100, 61-72.	4.4	34
72	Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 709-720.	3.8	34

#	Article	IF	CITATIONS
73	MiR-125a-5p Decreases the Sensitivity of Treg cells Toward IL-6-Mediated Conversion by Inhibiting IL-6R and STAT3 Expression. Scientific Reports, 2015, 5, 14615.	3.3	33
74	MicroRNA-155 Inhibits Polarization of Macrophages to M2-Type and Suppresses Choroidal Neovascularization. Inflammation, 2018, 41, 143-153.	3.8	33
75	An Autocrine Circuit of IL-33 in Keratinocytes Is Involved in the Progression of Psoriasis. Journal of Investigative Dermatology, 2021, 141, 596-606.e7.	0.7	33
76	Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation. PLoS Pathogens, 2017, 13, e1006773.	4.7	29
77	Synergy between IL-6 and TGF- \hat{l}^2 signaling promotes FOXP3 degradation. International Journal of Clinical and Experimental Pathology, 2012, 5, 626-33.	0.5	29
78	Molecular and biological role of the FOXP3 N-terminal domain in immune regulation by T regulatory/suppressor cells. Experimental and Molecular Pathology, 2012, 93, 334-338.	2.1	28
79	PI3K/AKT Pathway Mediates Induction of IL-1RA by TSH in Fibrocytes: Modulation by PTEN. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3363-3372.	3.6	28
80	Regulation of IL-1 Receptor Antagonist by TSH in Fibrocytes and Orbital Fibroblasts. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E625-E633.	3.6	28
81	RNAâ€binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Science, 2020, 111, 369-382.	3.9	28
82	Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer., 2021, 9, e002131.		27
83	Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discovery, 2021, 7, 89.	6.7	27
84	Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nature Metabolism, 2022, 4, 559-574.	11.9	27
85	Deubiquitination and stabilization of T-bet by USP10. Biochemical and Biophysical Research Communications, 2014, 449, 289-294.	2.1	26
86	Cambogin suppresses dextran sulphate sodiumâ€induced colitis by enhancing Treg cell stability and function. British Journal of Pharmacology, 2018, 175, 1085-1099.	5.4	25
87	Divergent Expression of IL-1 Receptor Antagonists in CD34+ Fibrocytes and Orbital Fibroblasts in Thyroid-associated Ophthalmopathy: Contribution of Fibrocytes to Orbital Inflammation. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2783-2790.	3.6	24
88	Cimetidine down-regulates stability of Foxp3 protein via Stub1 in Treg cells. Human Vaccines and Immunotherapeutics, 2016, 12, 2512-2518.	3.3	24
89	Prolyl 4-hydroxylase 2 promotes B-cell lymphoma progression via hydroxylation of Carabin. Blood, 2018, 131, 1325-1336.	1.4	24
90	Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. GigaScience, 2019, 8, .	6.4	24

#	Article	IF	Citations
91	USP22 is a positive regulator of NFATc2 on promoting IL2 expression. FEBS Letters, 2014, 588, 878-883.	2.8	23
92	<scp>USP</scp> 4 interacts and positively regulates <scp>IRF</scp> 8 function via K48â€linked deubiquitination in regulatory T cells. FEBS Letters, 2017, 591, 1677-1686.	2.8	23
93	Foxp1 Negatively Regulates T Follicular Helper Cell Differentiation and Germinal Center Responses by Controlling Cell Migration and CTLA-4. Journal of Immunology, 2018, 200, 586-594.	0.8	23
94	Interaction Between CCR6 ⁺ Th17 Cells and CD34 ⁺ Fibrocytes Promotes Inflammation: Implications in Graves' Orbitopathy in Chinese Population., 2018, 59, 2604.		23
95	Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis. Diabetes, 2020, 69, 1355-1367.	0.6	22
96	Impaired AGO2/miR-185-3p/NRP1 axis promotes colorectal cancer metastasis. Cell Death and Disease, 2021, 12, 390.	6.3	22
97	Single-Cell RNA Sequencing Identifies New Inflammation-Promoting Cell Subsets in Asian Patients With Chronic Periodontitis. Frontiers in Immunology, 2021, 12, 711337.	4.8	22
98	Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Journal of Genetics and Genomics, 2020, 47, 17-26.	3.9	21
99	60-kDa Tat-interactive Protein (TIP60) Positively Regulates Th-inducing POK (ThPOK)-mediated Repression of Eomesodermin in Human CD4+ T Cells. Journal of Biological Chemistry, 2013, 288, 15537-15546.	3.4	18
100	Regulatory T-Cell Differentiation and Their Function in Immune Regulation. Advances in Experimental Medicine and Biology, 2014, 841, 67-97.	1.6	18
101	How regulatory T cells sense and adapt to inflammation. Cellular and Molecular Immunology, 2015, 12, 519-520.	10.5	16
102	Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma. Science Bulletin, 2018, 63, 972-981.	9.0	16
103	Methylation-Induced Silencing of ALDH2 Facilitates Lung Adenocarcinoma Bone Metastasis by Activating the MAPK Pathway. Frontiers in Oncology, 2020, 10, 1141.	2.8	16
104	Deubiquitination and stabilization of IL-33 by USP21. International Journal of Clinical and Experimental Pathology, 2014, 7, 4930-7.	0.5	16
105	Downregulated cytotoxic CD8+ T-cell identifies with the NKG2A-soluble HLA-E axis as a predictive biomarker and potential therapeutic target in keloids. Cellular and Molecular Immunology, 2022, 19, 527-539.	10.5	16
106	TGF-β-Induced FLRT3 Attenuation Is Essential for Cancer-Associated Fibroblast–Mediated Epithelial–Mesenchymal Transition in Colorectal Cancer. Molecular Cancer Research, 2022, 20, 1247-1259.	3.4	16
107	Gallic acid induces T-helper-1-like T _{reg} cells and strengthens immune checkpoint blockade efficacy., 2022, 10, e004037.		16
108	Ubiquitin specific peptidase 4 stabilizes interferon regulatory factor protein and promotes its function to facilitate interleukin-4 expression in T helper type 2 cells. International Journal of Molecular Medicine, 2017, 40, 979-986.	4.0	14

#	Article	IF	CITATIONS
109	TOX Acts as a Tumor Suppressor by Inhibiting mTOR Signaling in Colorectal Cancer. Frontiers in Immunology, 2021, 12, 647540.	4.8	14
110	Adipose Tissue-Resident Regulatory T Cells. Advances in Experimental Medicine and Biology, 2017, 1011, 153-162.	1.6	13
111	FOXP3 ⁺ regulatory T cells and ageâ€related diseases. FEBS Journal, 2022, 289, 319-335.	4.7	13
112	The Dynamic Role of FOXP3+ Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	4.8	13
113	Ubiquitination signals critical to regulatory T cell development and function. International Immunopharmacology, 2013, 16, 348-352.	3.8	12
114	A Multicenter Study of the Clinical Features of Allergic Rhinitis in Central China. American Journal of Rhinology and Allergy, 2014, 28, 392-396.	2.0	12
115	Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cellular Immunology, 2019, 340, 103922.	3.0	12
116	Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+Foxp3+ Treg cells via enhancing mTNFα-TNFR2 pathway. Biochemical Pharmacology, 2021, 185, 114434.	4.4	12
117	Dissecting the Landscape of Activated CMV-Stimulated CD4+ T Cells in Humans by Linking Single-Cell RNA-Seq With T-Cell Receptor Sequencing. Frontiers in Immunology, 2021, 12, 779961.	4.8	12
118	<scp>DNMT</scp> 1 cooperates with <scp>MBD</scp> 4 to inhibit the expression of Glucocorticoidâ€induced <scp>TNFR</scp> â€irelated protein in human T cells. FEBS Letters, 2017, 591, 1929-1939.	2.8	11
119	Cutting Edge: Inhibition of Glycogen Synthase Kinase 3 Activity Induces the Generation and Enhanced Suppressive Function of Human IL-10+ FOXP3+–Induced Regulatory T Cells. Journal of Immunology, 2020, 205, 1497-1502.	0.8	11
120	JQ1, a bromodomain inhibitor, suppresses Th17 effectors by blocking p300â€mediated acetylation of RORγt. British Journal of Pharmacology, 2020, 177, 2959-2973.	5.4	11
121	Neoantigenâ€reactive T cell: An emerging role in adoptive cellular immunotherapy. MedComm, 2021, 2, 207-220.	7.2	11
122	MG149 inhibits histone acetyltransferase KAT8-mediated IL-33 acetylation to alleviate allergic airway inflammation and airway hyperresponsiveness. Signal Transduction and Targeted Therapy, 2021, 6, 321.	17.1	11
123	Current status and perspectives of regulatory T cell-based therapy. Journal of Genetics and Genomics, 2022, 49, 599-611.	3.9	11
124	Mouse Double Minute 2 Homolog-Mediated Ubiquitination Facilitates Forkhead Box P3 Stability and Positively Modulates Human Regulatory T Cell Function. Frontiers in Immunology, 2020, 11, 1087.	4.8	10
125	Single-cell RNA-seq unveils critical regulators of human FOXP3+Âregulatory T cell stability. Science Bulletin, 2020, 65, 1114-1124.	9.0	10
126	CD4+CD126low/â^' Foxp3+ Cell Population Represents a Superior Subset of Regulatory T Cells in Treating Autoimmune Diseases. Molecular Therapy, 2020, 28, 2406-2416.	8.2	9

#	Article	IF	CITATIONS
127	CD25 signaling regulates the function and stability of peripheral Foxp3+ regulatory T cells derived from the spleen and lymph nodes of mice. Molecular Immunology, 2016, 76, 35-40.	2.2	8
128	Dephosphorylated Polymerase I and Transcript Release Factor Prevents Allergic Asthma Exacerbations by Limiting IL-33 Release. Frontiers in Immunology, 2018, 9, 1422.	4.8	7
129	PARP-1 inhibitor-AG14361 suppresses acute allograft rejection via stabilizing CD4+FoxP3+ regulatory T cells. Pathology Research and Practice, 2020, 216, 153021.	2.3	7
130	Targeting FOXP3 complex ensemble in drug discovery. Advances in Protein Chemistry and Structural Biology, 2020, 121, 143-168.	2.3	6
131	Legend of the Sentinels: Development of Lung Resident Memory T Cells and Their Roles in Diseases. Frontiers in Immunology, 2020, 11, 624411.	4.8	6
132	hnRNPA1 enhances FOXP3 stability to promote the differentiation and functions of regulatory T cells. FEBS Letters, 2021, 595, 1962-1974.	2.8	6
133	The Effect of FOXP3+ Regulatory T Cells on Infectious and Inflammatory Diseases. Infectious Microbes & Diseases, 2021, 3, 187-197.	1.3	6
134	Reduced pannexin 1–IL-33 axis function in donor livers increases risk of MRSA infection in liver transplant recipients. Science Translational Medicine, 2021, 13, .	12.4	6
135	Engineered T cells and their therapeutic applications in autoimmune diseases. Zoological Research, 2022, 43, 150-165.	2.1	6
136	Regulatory T Cells and Their Clinical Applications in Antitumor Immunotherapy. Engineering, 2019, 5, 132-139.	6.7	4
137	USP4 is pathogenic in allergic airway inflammation by inhibiting regulatory T cell response. Life Sciences, 2021, 281, 119720.	4.3	4
138	Structural aspects of the FOXP3 regulatory complex as an immunopharmacological target. International Immunopharmacology, 2009, 9, 518-520.	3.8	3
139	Metabolic Choice Tunes Foxp3+ Regulatory T Cell Function. Advances in Experimental Medicine and Biology, 2021, 1278, 81-94.	1.6	3
140	H1N1 Virus Production and Infection. Bio-protocol, 2018, 8, e3062.	0.4	3
141	You, me and Foxp3: immune regulation for two. Immunotherapy, 2011, 3, 1139-1142.	2.0	2
142	Regulation of Metabolism Across Different Subsets of T Cells in Cancer. Advances in Experimental Medicine and Biology, 2017, 1011, 197-209.	1.6	2
143	Off-Target Deletion of Conditional Dbc1 Allele in the Foxp3YFP-Cre Mouse Line under Specific Setting. Cells, 2019, 8, 1309.	4.1	2
144	Schistosoma japonicum Infection in Treg-Specific USP21 Knockout Mice. Journal of Immunology Research, 2021, 2021, 1-15.	2.2	2

#	Article	IF	CITATIONS
145	Decidual NR2F2-Expressing CD4+ T Cells Promote TH2 Transcriptional Program During Early Pregnancy. Frontiers in Immunology, 2021, 12, 670777.	4.8	2
146	Genome assembly and transcriptome analysis provide insights into the antischistosome mechanism of Microtus fortis. Journal of Genetics and Genomics, 2020, 47, 743-755.	3.9	2
147	Immunology at the University of Pennsylvania. Immunologic Research, 2008, 42, 1-2.	2.9	1
148	Mechanisms and Control of Regulatory T Cells in Cancer. , 2012, , 195-216.		1
149	A Translational Perspective of a Deubiquitinase Inhibitor in Antitumor Immunity. EBioMedicine, 2016, 13, 7-8.	6.1	1
150	A role of IL-25, a sibling of IL-17, in triggering psoriatic skin inflammation. Science China Life Sciences, 2018, 61, 1437-1438.	4.9	1
151	FOXP3+ Treg Cells and Systems Biology Approaches to Studying Their Function. Translational Bioinformatics, 2015, , 73-93.	0.0	0
152	The E3 Ligase TRAF6 directs FOXP3 localization and facilitates Treg function through K63â€ŧype ubiquitination. FASEB Journal, 2019, 33, 792.1.	0.5	0