
Xing Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605199/publications.pdf Version: 2024-02-01

XING MENC

#	Article	IF	CITATIONS
1	Enhanced proton conductivity assisted by sodium ions in the proton conductive hybrid membranes. Materials Chemistry and Physics, 2022, 280, 125845.	2.0	2
2	A multifunctional anionic metal–organic framework for high proton conductivity and photoreduction of CO ₂ induced by cation exchange. Dalton Transactions, 2022, 51, 4798-4805.	1.6	7
3	Ag Nanoparticle-Modified Polyoxometalate-Based Metal–Organic Framework for Enhanced CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 11359-11365.	1.9	11
4	ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chemical Engineering Journal, 2022, 450, 138040.	6.6	37
5	Tuning proton conduction by different particle sizes in open-framework metal phosphates. Inorganic Chemistry Communication, 2021, 124, 108322.	1.8	4
6	Self-assembly of TiO ₂ /ZIF-8 nanocomposites for varied photocatalytic CO ₂ reduction with H ₂ O vapor induced by different synthetic methods. Nanoscale Advances, 2021, 3, 1455-1463.	2.2	8
7	Metal–organic framework (MOF) composite materials for photocatalytic CO ₂ reduction under visible light. Dalton Transactions, 2021, 50, 3186-3192.	1.6	26
8	Integration of zirconium-based metal–organic framework with CdS for enhanced photocatalytic conversion of CO ₂ to CO. Nanoscale, 2021, 13, 16977-16985.	2.8	21
9	Varied proton conductivity and photoreduction CO ₂ performance of isostructural heterometallic cluster based metal–organic frameworks. Inorganic Chemistry Frontiers, 2021, 8, 4062-4071.	3.0	17
10	Construction of polypyrrole nanotubes interconnected ZIFs-templated nickel-cobalt layered double hydroxide via varying the mass of ZIF-67 for supercapacitors with tunable performance. Materials Chemistry and Physics, 2020, 255, 123497.	2.0	16
11	In-situ pyrolysis of MnO2/PVDF composites on carbon cloths and their enhanced electrochemical performances. Solid State Sciences, 2020, 109, 106403.	1.5	0
12	A reasonable design of polypyrrole nanotubes interconnected Ni–Co layered double hydroxide-based composites <i>via</i> ZIF templates for high performance supercapacitors. New Journal of Chemistry, 2020, 44, 10776-10780.	1.4	9
13	Degradation of azo dyes under visible light with stable MOF based on tetrastyrene imidazole ligand. Dalton Transactions, 2020, 49, 4352-4357.	1.6	24
14	Cations mediating proton conductivity in an oxalate based microporous coordination polymer. New Journal of Chemistry, 2019, 43, 24-27.	1.4	20
15	Polyoxometalate-based metallogels as anode materials for lithium ion batteries. Dalton Transactions, 2019, 48, 10422-10426.	1.6	27
16	Enhanced proton conductivity of a MOF-808 framework through anchoring organic acids to the zirconium clusters by post-synthetic modification. CrystEngComm, 2019, 21, 3146-3150.	1.3	51
17	Coordination polymer-based conductive materials: ionic conductivity <i>vs.</i> electronic conductivity. Journal of Materials Chemistry A, 2019, 7, 24059-24091.	5.2	90
18	A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light. Dalton Transactions, 2018, 47, 4191-4197.	1.6	57

XING MENG

#	Article	IF	CITATIONS
19	A stable visible light-driven metallogel-based photocatalyst for dye removal. Research on Chemical Intermediates, 2018, 44, 1261-1274.	1.3	3
20	Multifunctional luminescent Zn(<scp>ii</scp>)-based metal–organic framework for high proton-conductivity and detection of Cr ³⁺ ions in the presence of mixed metal ions. Dalton Transactions, 2018, 47, 1383-1387.	1.6	58
21	Synthesis, structure and sensing behavior of a Cd-coordination polymer based on 1,10-phenanthroline and 2-aminoterephthalic acid. Functional Materials Letters, 2018, 11, 1850027.	0.7	3
22	Proton-conducting crystalline porous materials. Chemical Society Reviews, 2017, 46, 464-480.	18.7	530
23	A Metal–Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry - A European Journal, 2016, 22, 477-480.	1.7	155
24	A visible light-driven photocatalyst of a stable metal–organic framework based on Cu ₄ Cl clusters and TIPE spacers. Dalton Transactions, 2016, 45, 13477-13482.	1.6	28
25	Encapsulation of Ln ^{III} Ions/Dyes within a Microporous Anionic MOF by Postâ€synthetic Ionic Exchange Serving as a Ln ^{III} Ion Probe and Twoâ€Color Luminescent Sensors. Chemistry - A European Journal, 2015, 21, 9748-9752.	1.7	123
26	Highly thermostable lanthanide metal–organic frameworks exhibiting unique selectivity for nitro explosives. RSC Advances, 2015, 5, 93-98.	1.7	46
27	Lanthanide Ion Codoped Emitters for Tailoring Emission Trajectory and Temperature Sensing. Advanced Functional Materials, 2015, 25, 1463-1469.	7.8	263
28	A tetranuclear copper cluster-based MOF with sulfonate–carboxylate ligands exhibiting high proton conduction properties. Chemical Communications, 2015, 51, 8150-8152.	2.2	96
29	A Eu/Tb-codoped coordination polymer luminescent thermometer. Inorganic Chemistry Frontiers, 2014, 1, 757-760.	3.0	63
30	Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of a Europium(III) Metal–Organic Framework Producing a Multiâ€responsive Luminescent Sensor. Advanced Functional Materials, 2014, 24, 4034-4041.	7.8	542
31	A europium(<scp>iii</scp>) based metal–organic framework: bifunctional properties related to sensing and electronic conductivity. Journal of Materials Chemistry A, 2014, 2, 237-244.	5.2	149
32	A stable, pillar-layer metal–organic framework containing uncoordinated carboxyl groups for separation of transition metal ions. Chemical Communications, 2014, 50, 6406-6408.	2.2	76
33	One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. Journal of Materials Chemistry A, 2013, 1, 11043.	5.2	341
34	Supramolecular isomerism, single-crystal to single-crystal transformation induced by release of in situ generated I2 between two supramolecular frameworks. Dalton Transactions, 2013, 42, 5619.	1.6	8
35	A Series of Metal–Organic Frameworks Constructed From a V-shaped Tripodal Carboxylate Ligand: Syntheses, Structures, Photoluminescent, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 2756-2765.	1.4	52
36	A multifunctional proton-conducting and sensing pillar-layer framework based on [24-MC-6] heterometallic crown clusters. Chemical Communications, 2013, 49, 8483.	2.2	67